Mostrar el registro sencillo del ítem
Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico
dc.contributor.author | Castilla Caballero, Deyler Rafael | |
dc.contributor.other | Medina Guerrero, Astrid del Rosario | |
dc.contributor.other | Machuca Martínez, Fiderman | |
dc.contributor.other | Colina Marquez, Jose Angel | |
dc.coverage.spatial | Colombia 2016-2024 | |
dc.date.accessioned | 2024-10-10T21:25:40Z | |
dc.date.available | 2024-10-10T21:25:40Z | |
dc.date.issued | 2024-04-10 | |
dc.date.submitted | 2024-10-10 | |
dc.identifier.citation | Castilla Caballero, D. R., Medina Guerrero, A. del R., Machuca Martínez, F. y Colina Márquez, J. Ángel. (2024). Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico. Revista Colombiana de Química, 52(2), 43–53. https://doi.org/10.15446/rev.colomb.quim.v52n2.110351 | spa |
dc.identifier.issn | 0120-2804 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12750 | |
dc.description.abstract | La dinámica computacional de fluidos (CFD) se perfila como una herramienta apropiada para el modelamiento de procesos fotocatalíticos heterogéneos, pues permite considerar simultáneamente los diferentes fenómenos físicos trascendentales de los procesos. En el presente estudio se empleó el software COMSOL Multiphysics para modelar el régimen de flujo y determinar la distribución de las partículas de catalizador en un reactor fotocatalítico de película descendente, hecho relevante para determinar la eficiencia del reactor. Las simulaciones del reactor fueron realizadas con el módulo de Mezclas de COMSOL, en un régimen de flujo turbulento empleando el enfoque de RANS. Se detectaron siete zonas definidas con un perfil particular de concentración de catalizador en toda el área de la película, para las cuales se estimó la absorción fotónica en el reactor con el modelo de seis flujos (SFM). De ello se obtuvo que existe una diferencia de más del 20% entre el mayor y el menor valor del promedio de la absorción fotónica en el área reactiva, con lo que se puede esperar que la variación en la degradación de los contaminantes en estas zonas oscile entre el 10 y el 20%, lo cual debe tenerse en cuenta para la aplicabilidad de la tecnología. | spa |
dc.description.abstract | Computational fluid dynamics (CFD) is emerging as an appropriate tool for modeling heterogeneous photocatalytic processes, since it allows simultaneous consideration of the different physical phenomena involved in the processes. In the present study, COMSOL Multiphysics software was used to model the flow regime and to determine the distribution of catalyst particles in a falling film photocatalytic reactor, which is relevant to determine the reactor efficiency. The reactor simulations were performed with the COMSOL Mixture module in a turbulent flow regime using the RANS approach. Seven defined zones were detected having a particular catalyst-concentration profile over the entire film area, for which the photonic absorption in the reactor was estimated with the six-flux model (SFM). From this it was obtained that there is a difference of more than 20% between the highest and the lowest value of the average photonic absorption in the reactive area, so it can be expected that the variation in the degradation of pollutants in these zones ranges between 10 and 20%, which should be taken into account for the applicability of the technology. | spa |
dc.description.sponsorship | Universidad Tecnológica de Bolívar/Universidad del Valle | spa |
dc.format.extent | 11 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Revista Colombiana de Química | spa |
dc.title | Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico | spa |
dc.title.alternative | Modeling and simulation of falling film photocatalytic reactors: use of computational fluid dynamics (CFD) for multiphase system analysis | spa |
dc.title.alternative | Modelagem e simulação de reatores fotocatalíticos de filme descendente: uso da dinâmica de fluidos computa- cional (CFD) para análise de sistemas multifásicos | spa |
dcterms.bibliographicCitation | A. Yusuf y G. Palmisano, “Three-dimensional CFD modelling of a photocatalytic parallel-channel microreactor”, Chem Eng Sci., vol. 229, nro. 16, pp. 116051, ene. 2021. DOI: https://doi.org/ 10.1016/j.ces.2020.116051 | spa |
dcterms.bibliographicCitation | I. Garrido, P. Flores, P. Hellín, N. Vela, S. Navarro y J. Fenoll, “So lar reclamation of agro-wastewater polluted with eight pestici des by heterogeneous photocatalysis using a modular facility. A case study”, Chemosphere, vol. 249, pp. 126156, jun. 2020. DOI: https://doi.org/10.1016/j.chemosphere.2020.126156 | spa |
dcterms.bibliographicCitation | A. Yusuf, C. Garlisi, R. Peralta Muniz Moreira, G. Li Puma y G. Palmisano, “Multiphysics computational fluid dynamics (CFD) modelling of diclofenac amide removal by photocatalytic oxi dation on Fe-TiO2/N-TiO2 thin films microreactor”, Chem Eng Sci., vol. 274, nro. 15, pp. 118662, jun. 2023. DOI: https://doi. org/10.1016/j.ces.2023.118662 | spa |
dcterms.bibliographicCitation | J.O.B. Lira, H.G. Riella, N. Padoin y C. Soares, “CFD + DoE opti mization of a flat plate photocatalytic reactor applied to NOx abatement”, Chemical Engineering and Processing - Process Intensi fication, vol. 154, pp. 107998, ago. 2020. DOI: https://doi.org/ 10.1016/j.cep.2020.107998 | spa |
dcterms.bibliographicCitation | Y. Boyjoo, M. Ang y V. Pareek, “Some aspects of photocatalytic reactor modeling using computational fluid dynamics”, Chem Eng Sci., vol. 101, nro. 20, pp. 764–784, sep. 2013. DOI: https:// doi.org/10.1016/j.ces.2013.06.035 | spa |
dcterms.bibliographicCitation | O. Alvarado-Rolon, R. Natividad, J. Ramírez-García, J. Oroz co-Velazco, J.A. Hernandez-Servin y A. Ramírez-Serrano, “Ki netic modelling of paracetamol degradation by photocatalysis: Incorporating the competition for photons by the organic mo lecule and the photocatalyst”, J Photochem Photobiol A Chem., vol. 412, nro. 1, pp. 113252, may. 2021. DOI: https://doi.org/ 10.1016/J.JPHOTOCHEM.2021.113252 | spa |
dcterms.bibliographicCitation | D. Castilla-Caballero, F. Machuca-Martínez, C. Bustillo-Lecomp te y J. Colina-Márquez, “Photocatalytic degradation of com mercial acetaminophen: Evaluation, modeling, and scaling-up of photoreactors”, Catalysts, vol. 8, nro. 5, pp. 1-15, 2018. DOI: https://doi.org/10.3390/catal8050179. | spa |
dcterms.bibliographicCitation | I. Grčić, L. Radetić, K. Miklec, I. Presečki, K. Leskovar, H. Meaš ki, M. Čizmić y I. Brnardić, “Solar photocatalysis application in UWWTP outlets - simulations based on predictive models in flat-plate reactors and pollutant degradation studies with in silico toxicity assessment”, J Hazard Mater., vol. 461, nro. 5, pp. 132589, ene. 2024. DOI: https://doi.org/10.1016/J.JHAZ MAT.2023.132589. | spa |
dcterms.bibliographicCitation | M.A. Mueses, J. Colina-Márquez, F. Machuca-Martínez y G. Li Puma, “Recent advances on modeling of solar heterogeneous photocatalytic reactors applied for degradation of pharmaceu ticals and emerging organic contaminants in water”, Curr Opin Green Sustain Chem., vol. 30, p. 100486, ago. 2021. DOI: https:// doi.org/10.1016/J.COGSC.2021.100486 | spa |
dcterms.bibliographicCitation | M. Asgharian, B. Khoshandam, M. Mehdipourghazi y N. Kera mati, “Photocatalytic degradation of tetracycline in a stirred tank: computational fluid dynamic modeling and data valida tion”, Reaction Kinetics, Mechanisms and Catalysis, vol. 134, pp. 553–568, sep. 2021. DOI: https://doi.org/10.1007/s11144- 021-02062-0. | spa |
dcterms.bibliographicCitation | J. Colina-Marquez, D. Castilla-Caballero y F. Machuca-Marti nez, “Modeling of a falling-film photocatalytic reactor: Fluid dynamics for turbulent regime”, Appl Math Model, vol. 40, nros. 7–8, pp. 4812–4821, abr. 2016. DOI: https://doi.org/ 10.1016/j.apm.2015.12.007. | spa |
dcterms.bibliographicCitation | ] S.M. Fouad, Y.M.S. El-Shazly, M.A. Alyoubi, S.A. Nosier y M. H. Abdel-Aziz, “Enhanced photocatalytic degradation of ca tionic dyes using slurry of anatase titania in a falling film reac tor”, Case Studies in Chemical and Environmental Engineering, vol. 8, pp. 100518, dic. 2023. DOI: https://doi.org/10.1016/J.CS CEE.2023.100518 | spa |
dcterms.bibliographicCitation | K. Kouvelis, A.A. Ioannidi, A. Petala, M. Souliotis y Z. Fron tistis, “Photocatalytic Degradation of Losartan with Bismuth Oxychloride: Batch and Pilot Scale Demonstration”, Catalysts, vol. 13, nro. 8, pp. 1175, 2023. DOI: https://doi.org/10.3390/ catal13081175 | spa |
dcterms.bibliographicCitation | F. de J. Silerio-Vázquez, C.M. Núñez-Núñez, M.T. Alarcón-He rrera y J.B. Proal-Nájera, “Comparative Efficiencies for Phenol Degradation on Solar Heterogeneous Photocatalytic Reactors: Flat Plate and Compound Parabolic Collector”, Catalysts, vol. 12, nro. 6, pp. 575, 2022. DOI: https://doi.org/10.3390/CAT AL12060575 | spa |
dcterms.bibliographicCitation | F. Biglar, A. Talaiekhozani, F. Aminsharei, J. Park, A. Barghi y S. Rezania, “Application of zno-nd nano-photocatalyst for the reactive red 198 dye decolorization in the falling-film photoca talytic reactor”, Toxics, vol. 9, pp. 254, 2021. DOI: https://doi. org/10.3390/toxics9100254 | spa |
dcterms.bibliographicCitation | Z.Y. Shnain, M. Fadhil Abid, K.A. Sukkar y K.A. Sukkar, “Pho todegradation of mefenamic acid from wastewater in a con tinuous flow solar falling film reactor”, Desalination and Water Treatment, vol. 2010, pp. 22-30, ene. 2021. DOI: https://doi. org/10.5004/dwt.2021.26581 | spa |
dcterms.bibliographicCitation | M.A. Mueses, F. Machuca-Martinez y G. Li Puma, “Effective quantum yield and reaction rate model for evaluation of photo catalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors”, Chemical Engineering Journal, vol. 215–216, nro. 15, pp. 937–947, ene. 2013. DOI: https:// doi.org/10.1016/j.cej.2012.11.076 | spa |
dcterms.bibliographicCitation | G. Li Puma, J. Khor y A. Brucato, “Modeling of an annular pho tocatalytic reactor for water purification: oxidation of pestici des”, Environ Sci Technol., vol. 38, nro. 13, pp. 3737–3745, may. 2004. DOI: https://doi.org/10.1021/es0301020 | spa |
dcterms.bibliographicCitation | J. Ling, P. V. Skudarnov, C.X. Lin y M. A. Ebadian, “Numerical investigations of liquid–solid slurry flows in a fully developed turbulent flow region”, Int J Heat Fluid Flow, vol. 24, nro.: 3, pp. 389–398, jun. 2003. DOI: https://doi.org/10.1016/S0142- 727X(03)00018-3 | spa |
dcterms.bibliographicCitation | N. Qi, H. Zhang, B. Jin y K. Zhang, “CFD modelling of hydrody namics and degradation kinetics in an annular slurry photoca talytic reactor for wastewater treatment”, Chemical Engineering Journal, vol. 172, nro. 1, pp. 84–95, ago. 2011. DOI: https://doi. org/10.1016/J.CEJ.2011.05.068 | spa |
dcterms.bibliographicCitation | X. Xu, S. Wang, C. Gong y Q. Yang, “Improvement of the bubble separation through eccentric planar cyclones: Experiments and CFD simulations”, Chemical Engineering Research and Design, vol. 198, pp. 208–220, oct. 2023. DOI: https://doi.org/10.1016/J. CHERD.2023.06.047 | spa |
dcterms.bibliographicCitation | R. Silva, C. Cotas, F.A.P. Garcia, P.M. Faia y M.G. Rasteiro, “Par ticle Distribution Studies in Highly Concentrated Solid-liquid Flows in Pipe Using the Mixture Model”, Procedia Eng. vol. 102, pp. 1016–1025, 2015. DOI: https://doi.org/10.1016/J. PROENG.2015.01.224 | spa |
dcterms.bibliographicCitation | “Turbulence Modeling in Mixture Models”, 2023. [En línea]. Disponible: https://doc.comsol.com/5.5/doc/com.comsol.hel p.cfd/cfd_ug_fluidflow_multi.09.109.html [Último acceso: 2/11/2023). | spa |
dcterms.bibliographicCitation | A. Brucato, C. Grisafi, G. Montante, G. Rizzuti y G. Vella, “Es timating radiant fields in flat heterogeneous photoreactors b the six-flux model”, AIChE Journal, vol. 52, pp. 3882–3890, sep. 2006. DOI: https://doi.org/10.1002/aic.10984 | spa |
dcterms.bibliographicCitation | J. Colina-Márquez, F. Machuca-Martínez y G. Li Puma, “Radia tion absorption and optimization of solar photocatalytic reac tors for environmental applications”, Environ Sci Technol., vol. 44, nro. 13, pp. 5112–20, 2010. DOI: https://doi.org/10.1021/ es100130h | spa |
dcterms.bibliographicCitation | J. Colina-Márquez, F. Machuca-Martínez y G. Li Puma, “Pho tocatalytic mineralization of commercial herbicides in a pi lot-scale solar CPC reactor: photoreactor modeling and reac tion kinetics constants independent of radiation field”, Environ Sci Technol., vol. 43, nro. 23, pp. 8953–60. DOI: https://doi. org/10.1021/es902004b | spa |
dcterms.bibliographicCitation | J. Colina-Márquez, F. Machuca-Martínez y G. Puma, “Mode ling the Photocatalytic Mineralization in Water of Commercial Formulation of Estrogens 17-β Estradiol (E2) and Nomegestrol Acetate in Contraceptive Pills in a Solar Powered Compound Pa rabolic Collector”, Molecules, vol. 20, nro. 7, pp. 13354–13373, 2015. DOI: https://doi.org/10.3390/molecules200713354 | spa |
dcterms.bibliographicCitation | J. Colina-Marquez, D. Castilla-Caballero y F. Machuca-Marti nez, “Modeling of a falling-film photocatalytic reactor: Fluid dynamics for turbulent regime”, Appl Math Model., vol. 40, nro. 7–8, pp. 4812-4821, abr. 2015. DOI: https://doi.org/10.1016/j. apm.2015.12.007 | spa |
dcterms.bibliographicCitation | G. Karimi y M. Kawaji, “An experimental study of freely fa lling films in a vertical tube”, Chem Eng Sci., vol. 53, nro. 20, pp. 3501–3512, 1998. DOI: https://doi.org/10.1016/S0009- 2509(98)00159-6 | spa |
dcterms.bibliographicCitation | Z. Wei, Y. Wang, Z. Wu, X. Peng, G. Yu y F. Wang, “Flow Charac teristics of the Vertical Turbulent Falling Film at High Reynolds Numbers”, Ind Eng Chem Res., vol. 60, nro. 1, pp. 678–696, 2021. DOI: https://doi.org/10.1021/acs.iecr.0c03557 | spa |
dcterms.bibliographicCitation | F.P. Incropera y D.P. DeWitt, Fundamentos de transferencia de ca lor, Pearson Educación, 1999. | spa |
dcterms.bibliographicCitation | A.M. Horst, Z. Ji y P.A. Holden, “Nanoparticle dispersion in environmentally relevant culture media: a TiO2 case study and considerations for a general approach”, Journal of Nano particle Research, vol. 14, pp. 1014, jul. 2012. DOI: https://doi. org/10.1007/s11051-012-1014-2 | spa |
dcterms.bibliographicCitation | R. Tsekov, E. Evstatieva, K.W. Stockelhuber y P.G. Smirniotis, “Stability of TiO2 suspensions in reactors for degradation of to xic pollutants”, Progr Colloid Polym Sci., vol. 126, pp. 117–120, nov. 2004. DOI: https://doi.org/10.1007/b94005. | spa |
dcterms.bibliographicCitation | Comsol, “Comsol User’s Guide-CFD Module”. V. 5.2, 2015. | spa |
dcterms.bibliographicCitation | H.K. Versteeg y W. Malalasekera, An introduction to Computatio nal Fluid Dynamics, Prentice Hall, 1995. | spa |
dcterms.bibliographicCitation | D. Green y R. Perry, Perry’s Chemical Engineers’ Handbook, Eighth Edition, McGraw-Hill Education, 2007 | spa |
dcterms.bibliographicCitation | R.B. Bird, W.E. Stewart y E. N. Lightfoot, Transport Phenomena, Wiley, 2007. | spa |
dcterms.bibliographicCitation | L. Hurtado, R. Natividad, E. Torres-García, J. Farias y G. Li Puma, “Correlating the photocatalytic activity and the optical proper ties of LiVMoO6 photocatalyst under the UV and the visible region of the solar radiation spectrum”, Chemical Engineering Journal, vol. 262, pp. 1284–1291, 2015. DOI: https://doi.org/ 10.1016/j.cej.2014.10.052. | spa |
dcterms.bibliographicCitation | B. Bayarri, J. Giménez, M.I. Maldonado, S. Malato y S. Esplu gas, “2,4-Dichlorophenol degradation by means of heteroge neous photocatalysis. Comparison between laboratory and pilot plant performance”, Chemical Engineering Journal, vol. 232, pp. 405–417, oct. 2013. DOI: https://doi.org/10.1016/ j.cej.2013.07.102. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.subject.keywords | Fotocatálisis | spa |
dc.subject.keywords | CFD | spa |
dc.subject.keywords | Reactor de película descendente | spa |
dc.subject.keywords | Sistema multifase | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.issn-l | 2357-3791 | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ingeniería | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
dc.publisher.discipline | Ingeniería Ambiental | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.