Mostrar el registro sencillo del ítem

dc.contributor.authorVillar-Salinas, Sergio
dc.contributor.authorKanvinde, Amit
dc.contributor.authorLopez-Almansa, Francisco
dc.date.accessioned2024-09-27T19:44:21Z
dc.date.available2024-09-27T19:44:21Z
dc.date.issued2024-09-12
dc.date.submitted2024-09-25
dc.identifier.citationVillar-Salinas, S., A. Kanvinde, and F. Lopez-Almansa. 2024. “Estimation of backbone model parameters for simulation of exposed column base plates.” J. Constr. Steel Res., 223 (December). https://doi.org/10.1016/j.jcsr.2024.109034.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12740
dc.description.abstractAn approach is presented for the estimation of the parameters required to simulate the nonlinear monotonic (i.e., backbone) rotational response of Exposed-Column-Base-Plate (ECBP) connections subjected to moment and axial compression. A trilinear backbone curve is selected to represent the rotational response, defined by three deformation and two strength parameters; these properly represent the stiffness, strength, and ductility of the connections. This approach is accompanied by a tool to facilitate convenient estimation of the parameters. The approach is based on a combination of behavioral insights and physics-based models (for some parameters) as well as regression for other parameters, which are estimated from a dataset of eighty-four experiments on ECBP connections conducted over the last forty years in the United States, Europe, and Asia. Predictive equations are provided to estimate the various parameters defining the nonlinear response, and their efficacy is examined by comparing them with the test data; in addition, well-established techniques are implemented to avoid collinearity and the overfitting of regression models. The results show that the models presented in this work provide robust and accurate predictions for in-sample and out-of-sample data. Limitations are outlined.spa
dc.description.sponsorshipFundación Carolina, Universidad Tecnológica de Bolívar, PCEM SASspa
dc.format.extent15 pags.
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Constructional Steel Researchspa
dc.titleEstimation of backbone model parameters for simulation of exposed column base platesspa
dcterms.bibliographicCitationI. Piana, A.F.G. Calenzani Study of design methodologies of steel column bases Ibracon Struct. Mater. J., 11 (2018), pp. 203-243, 10.1590/s1983-41952018000100011spa
dcterms.bibliographicCitationEröz Murat White Donald W., DesRoches Reginald, Direct analysis and design of steel frames accounting for partially restrained column base conditions J. Struct. Eng., 134 (2008), pp. 1508-1517, 10.1061/(ASCE)0733-9445(2008)134:9(1508spa
dcterms.bibliographicCitationJ.P. Jaspart, D. Vandegans Application of the component method to column bases J. Constr. Steel Res., 48 (1998), pp. 89-106, 10.1016/S0143-974X(98)90196-1spa
dcterms.bibliographicCitationJ.C. Ermopoulos, G.T. Michaltsos Analytical modelling of stress distribution under column base plates Second World Conf. Steel Constr., 46 (1998), p. 246, 10.1016/S0143-974X(98)80026-6spa
dcterms.bibliographicCitationJ.E. Grauvilardell, D. Lee, J.F. Hajjar, R.J. Dexter Synthesis of design, testing and analysis research on steel column base plate connections in high-seismic zones 181 (2005)spa
dcterms.bibliographicCitationK. Tsavdaridis, M. Shaheen, C. Baniotopoulos, E. Salem Analytical approach of anchor rod stiffness and Steel Base-plate calculation under tension Structures, 5 (2015), pp. 207-218, 10.1016/j.istruc.2015.11.001spa
dcterms.bibliographicCitationS. Khodaie, M.R. Mohamadi-shooreh, M. Mofid Parametric analyses on the initial stiffness of the SHS column base plate connections using FEM Eng. Struct., 34 (2012), pp. 363-370, 10.1016/j.engstruct.2011.09.026spa
dcterms.bibliographicCitationM.A.K. Fasaee, M.R. Banan, S. Ghazizadeh Capacity of exposed column base connections subjected to uniaxial and biaxial bending moments J. Constr. Steel Res., 148 (2018), pp. 361-370, 10.1016/j.jcsr.2018.05.025spa
dcterms.bibliographicCitationF. Zareian, A. Kanvinde Effect of column-base flexibility on the seismic response and safety of steel moment-resisting frames Earthquake Spectra, 29 (2013), pp. 1537-1559, 10.1193/030512EQS062Mspa
dcterms.bibliographicCitationM. Latour, G. Rizzano Mechanical modelling of exposed column base plate joints under cyclic loads J. Constr. Steel Res., 162 (2019), Article 105726, 10.1016/j.jcsr.2019.105726spa
dcterms.bibliographicCitationA.M. Kanvinde, S.J. Jordan, R.J. Cooke Exposed column base plate connections in moment frames — simulations and behavioral insights J. Constr. Steel Res., 84 (2013), pp. 82-93, 10.1016/j.jcsr.2013.02.015spa
dcterms.bibliographicCitationJ.M. Fisher, L.A. Kloiber Design Guide 1: Base Plate and Anchor Rod Design (second edition) (2006) https://www.aisc.org/Design-Guide-1-Base-Plate-and-Anchor-Rod-Design-Second-Edition-Print#.XVfizOhKhPYspa
dcterms.bibliographicCitationAISC 341 Seismic Provisions for Structural Steel Buildings https://www.aisc.org/globalassets/aisc/publications/standards/seismic-provisions-for-structural-steel-buildings-ansi-aisc-341-16.pdf (2022), Accessed 12th Nov 2018spa
dcterms.bibliographicCitationA. Kanvinde, D. Grilli, F. Zareian Rotational stiffness of exposed column base connections: experiments and analytical models J. Struct. Eng., 138 (2012), pp. 549-560, 10.1061/(ASCE)ST.1943-541X.0000495spa
dcterms.bibliographicCitationM. Latour, V. Piluso, G. Rizzano Rotational behaviour of column base plate connections: experimental analysis and modelling Eng. Struct., 68 (2014), pp. 14-23, 10.1016/j.engstruct.2014.02.037spa
dcterms.bibliographicCitationI. Gomez, A. Kanvinde, C. Smith Exposed Column Base Connections Subjected to Axial Compression and Flexure American Institute of Steel Construction, AISC, Chicago, IL USA (2010)spa
dcterms.bibliographicCitationT. Falborski, A.S. Hassan, A.M. Kanvinde Column base fixity in steel moment frames: observations from instrumented buildings J. Constr. Steel Res., 168 (2020), Article 105993, 10.1016/j.jcsr.2020.105993spa
dcterms.bibliographicCitationA.S. Hassan, B. Song, C. Galasso, A. Kanvinde Seismic Performance of Exposed Column–Base Plate Connections with Ductile Anchor Rods J. Struct. Eng., 148 (2022), Article 04022028, 10.1061/(ASCE)ST.1943-541X.0003298spa
dcterms.bibliographicCitationC.A. Trautner, T. Hutchinson, P.R. Grosser, J.F. Silva Investigation of steel column–baseplate connection details incorporating ductile anchors J. Struct. Eng., 143 (2017), Article 04017074, 10.1061/(ASCE)ST.1943-541X.0001759spa
dcterms.bibliographicCitationA. Picard, D. Beaulieu Behaviour of a simple column base connection Can. J. Civ. Eng., 12 (1985), pp. 126-136, 10.1139/l85-013spa
dcterms.bibliographicCitationR.E. Melchers Column-base response under applied moment J. Constr. Steel Res., 23 (1992), pp. 127-143, 10.1016/0143-974X(92)90040-Lspa
dcterms.bibliographicCitationK.K. Hon, R.E. Melchers Experimental behaviour of steel column bases J. Constr. Steel Res., 9 (1988), pp. 35-50, 10.1016/0143-974X(88)90055-7spa
dcterms.bibliographicCitationF. Kavoura, B. Gencturk, M. Dawood Evaluation of Existing Provisions for Design of “Pinned” Column Base-Plate Connections (2018), 10.1016/j.jcsr.2018.05.030spa
dcterms.bibliographicCitationF. Kavoura, B. Gencturk, M. Dawood, M. Gurbuz Influence of base-plate connection stiffness on the design of low-rise metal buildings J. Constr. Steel Res., 115 (2015), pp. 169-178, 10.1016/j.jcsr.2015.08.005spa
dcterms.bibliographicCitationF. Kavoura, B. Gencturk, M. Dawood Reversed cyclic behavior of column-to-foundation connections in low-rise metal buildings J. Struct. Eng., 143 (2017), Article 04017095, 10.1061/(ASCE)ST.1943-541X.0001821spa
dcterms.bibliographicCitationC.G. Salmon, L. Schenker, B.G. Johnston Moment-rotation characteristics of column anchorages Trans. Am. Soc. Civ. Eng., 122 (1957), pp. 132-154, 10.1061/TACEAT.0007496spa
dcterms.bibliographicCitationJ.Ch. Ermopoulos, G.N. Stamatopoulos Mathematical modelling of column base plate connections J. Constr. Steel Res., 36 (1996), pp. 79-100, 10.1016/0143-974X(95)00011-Jspa
dcterms.bibliographicCitationR.M. Drake, S.J. Elkin Beam-column base plate design-LRFD method Engl. J., 36 (1999), pp. 16-38spa
dcterms.bibliographicCitationA.M. Kanvinde, P. Higgins, R.J. Cooke, J. Perez, J. Higgins Column base connections for hollow steel sections: seismic performance and strength models J. Struct. Eng., 141 (2015), Article 04014171, 10.1061/(ASCE)ST.1943-541X.0001136spa
dcterms.bibliographicCitationM. Dumas, D. Beaulieu, A. Picard Characterization equations for steel column base connections Can. J. Civ. Eng., 33 (2006), pp. 409-420, 10.1139/l05-054spa
dcterms.bibliographicCitationH. Díaz, E. Nuñez, C. Oyarzo-Vera Monotonic response of exposed base plates of columns: numerical study and a new design method Metals, 220 (2020), p. 396, 10.3390/met10030396spa
dcterms.bibliographicCitationM. Latour, G. Rizzano A theoretical model for predicting the rotational capacity of steel base joints J. Constr. Steel Res., 91 (2013), pp. 89-99, 10.1016/j.jcsr.2013.08.009spa
dcterms.bibliographicCitationP. Torres Rodas, Z. Farzin, K. Amit Hysteretic model for exposed column–base connections J. Struct. Eng., 142 (2016), Article 04016137, 10.1061/(ASCE)ST.1943-541X.0001602spa
dcterms.bibliographicCitationG.N. Stamatopoulos, J.Ch. Ermopoulos Experimental and analytical investigation of steel column bases J. Constr. Steel Res., 67 (2011), pp. 1341-1357, 10.1016/j.jcsr.2011.03.007spa
dcterms.bibliographicCitationG. Abdollahzadeh, M. Ghobadi Mathematical modeling of column-base connections under monotonic loading Civ. Eng. Infrastruct. J., 47 (2014), pp. 255-272, 10.7508/ceij.2014.02.008spa
dcterms.bibliographicCitationA. Mohabeddine, Y.W. Koudri, J.A.F.O. Correia, J.M. Castro Rotation capacity of steel members for the seismic assessment of steel buildings Eng. Struct., 244 (2021), Article 112760, 10.1016/j.engstruct.2021.112760spa
dcterms.bibliographicCitationD.G. Lignos, H. Krawinkler Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading J. Struct. Eng., 137 (2011), pp. 1291-1302, 10.1061/(ASCE)ST.1943-541X.0000376spa
dcterms.bibliographicCitationY.-C. You, D. Lee Development of improved exposed column-base plate strong-axis joints of low-rise steel buildings J. Constr. Steel Res., 169 (2020), Article 106062, 10.1016/j.jcsr.2020.106062spa
dcterms.bibliographicCitationC.A. Trautner, T. Hutchinson, P.R. Grosser, J.F. Silva Effects of detailing on the cyclic behavior of steel baseplate connections designed to promote anchor yielding J. Struct. Eng., 142 (2016), Article 04015117, 10.1061/(ASCE)ST.1943-541X.0001361spa
dcterms.bibliographicCitationCEN Eurocode 3: Design of steel structures - Part 1–8: Design of joints (EN 1993-1-8 :2005), Brussels European Comitee for Standarization (2005)spa
dcterms.bibliographicCitationS. Demir, M. Husem, S. Pul Failure analysis of steel column-RC base connections under lateral cyclic loading Struct. Eng. Mech., 50 (2014), pp. 459-469, 10.12989/sem.2014.50.4.459spa
dcterms.bibliographicCitationJ.-H. Choi, Y. Choi An experimental study on inelastic behavior for exposed-type steel column bases under three-dimensional loadings J. Mech. Sci. Technol., 27 (2013), pp. 747-759, 10.1007/s12206-012-0901-xspa
dcterms.bibliographicCitationM. Fahmy, B. Stojadinovic, S.C. Goel Analytical and experimental studies on the seismic response of steel column bases, in: Vancouver, Canadá (1999), pp. 245-250spa
dcterms.bibliographicCitationJ.J. Burda, A. Itani Studies of Seismic Behavior of Steel Base Plates CCEER 99-7, Center for Civil Engineering Earthquake Research (CEER), Reno, Nevada, USA (1999)spa
dcterms.bibliographicCitationA.T. Wheeler, M.J. Clarke, G.J. Hancock, T.M. Murray Design model for bolted moment end plate connections joining rectangular hollow sections J. Struct. Eng., 124 (1998), pp. 164-173, 10.1061/(ASCE)0733-9445(1998)124:2(164)spa
dcterms.bibliographicCitationF. Wald, I. Simek, Z. Sokol, J. Seifer The column-base stiffness tests, v semi-rigid behaviour of civil engineering structural connections Proc. Second State Art Workshop, Brussels (1994), pp. 273-282spa
dcterms.bibliographicCitationD.P. Thambiratnam, P. Paramasivam Base plates under axial loads and moments J. Struct. Eng., 112 (1986), pp. 1166-1181, 10.1061/(ASCE)0733-9445(1986)112:5(1166)spa
dcterms.bibliographicCitationS. Chatterjee, A.S. Hadi, Regression Analysis by Example, Wiley, Somerset, 2015. https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=918623&entityid=urn:mace:eduserv.org.uk:athens:provider:liv.ac.uk (accessed March 9, 2022).spa
dcterms.bibliographicCitationM. Aladsani, H.V. Burton, S. Abdullah, J. Wallace Explainable machine learning model for predicting drift capacity of reinforced concrete walls ACI Struct. J., 119 (2022), 10.14359/51734484spa
dcterms.bibliographicCitationH. Sun, H.V. Burton, H. Huang Machine learning applications for building structural design and performance assessment: state-of-the-art review J. Build. Eng., 33 (2021), Article 101816, 10.1016/j.jobe.2020.101816spa
dcterms.bibliographicCitationT. Obuchi, Y. Kabashima Cross validation in LASSO and its acceleration J. Stat. Mech. Theory Exp., 2016 (2016), Article 053304, 10.1088/1742-5468/2016/05/053304spa
dcterms.bibliographicCitationA.B. Kabir, A. Hasan, A.M. Billah Failure mode identification of column base plate connection using data-driven machine learning techniques Eng. Struct., 240 (2021), Article 112389, 10.1016/j.engstruct.2021.112389spa
dcterms.bibliographicCitationD. Nettleton Selection of Variables and Factor Derivation Commer. Data Min., Elsevier, in (2014), pp. 79-104, 10.1016/B978-0-12-416602-8.00006-6spa
dcterms.bibliographicCitationSimple Linear Regression, in: Regres. Anal. Ex., John Wiley & Sons, Inc., Hoboken, NJ, USA (2006), pp. 21-51, 10.1002/0470055464.ch2spa
dcterms.bibliographicCitationD.K. Dalal, M.J. Zickar Some common myths about centering predictor variables in moderated multiple Regression and polynomial Regression Organ. Res. Methods, 15 (2012), pp. 339-362, 10.1177/1094428111430540spa
dcterms.bibliographicCitationC.K. Ender, D. Tofighi Centering predictor variables in cross-sectional multilevel models: a new look at an old issue Psychol. Methods, 12 (2007), pp. 121-138, 10.1037/1082-989X.12.2.121spa
dcterms.bibliographicCitationJ.A.S.P. Team JASP (Version 0.17.1) [Computer software] (2023)spa
dcterms.bibliographicCitationT.G. Wakjira, A. Abushanab, U. Ebead, W. Alnahhal FAI: fast, accurate, and intelligent approach and prediction tool for flexural capacity of FRP-RC beams based on super-learner machine learning model Mater. Today Commun., 33 (2022), Article 104461, 10.1016/j.mtcomm.2022.104461spa
dcterms.bibliographicCitationA.S. Hassan, P. Torres-Rodas, L. Giulietti, A. Kanvinde Strength characterization of exposed column base plates subjected to axial force and biaxial bending Eng. Struct., 237 (2021), Article 112165, 10.1016/j.engstruct.2021.112165spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doihttps://doi.org/10.1016/j.jcsr.2024.109034
dc.subject.keywordsExposed-column-baseplatesspa
dc.subject.keywordsMoment-rotation curvesspa
dc.subject.keywordsAxial compression ratiospa
dc.subject.keywordsRegression modelsspa
dc.subject.keywordsPerformance-based assessmentspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Civilspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.