Mostrar el registro sencillo del ítem
Estimation of backbone model parameters for simulation of exposed column base plates
dc.contributor.author | Villar-Salinas, Sergio | |
dc.contributor.author | Kanvinde, Amit | |
dc.contributor.author | Lopez-Almansa, Francisco | |
dc.date.accessioned | 2024-09-27T19:44:21Z | |
dc.date.available | 2024-09-27T19:44:21Z | |
dc.date.issued | 2024-09-12 | |
dc.date.submitted | 2024-09-25 | |
dc.identifier.citation | Villar-Salinas, S., A. Kanvinde, and F. Lopez-Almansa. 2024. “Estimation of backbone model parameters for simulation of exposed column base plates.” J. Constr. Steel Res., 223 (December). https://doi.org/10.1016/j.jcsr.2024.109034. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12740 | |
dc.description.abstract | An approach is presented for the estimation of the parameters required to simulate the nonlinear monotonic (i.e., backbone) rotational response of Exposed-Column-Base-Plate (ECBP) connections subjected to moment and axial compression. A trilinear backbone curve is selected to represent the rotational response, defined by three deformation and two strength parameters; these properly represent the stiffness, strength, and ductility of the connections. This approach is accompanied by a tool to facilitate convenient estimation of the parameters. The approach is based on a combination of behavioral insights and physics-based models (for some parameters) as well as regression for other parameters, which are estimated from a dataset of eighty-four experiments on ECBP connections conducted over the last forty years in the United States, Europe, and Asia. Predictive equations are provided to estimate the various parameters defining the nonlinear response, and their efficacy is examined by comparing them with the test data; in addition, well-established techniques are implemented to avoid collinearity and the overfitting of regression models. The results show that the models presented in this work provide robust and accurate predictions for in-sample and out-of-sample data. Limitations are outlined. | spa |
dc.description.sponsorship | Fundación Carolina, Universidad Tecnológica de Bolívar, PCEM SAS | spa |
dc.format.extent | 15 pags. | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Constructional Steel Research | spa |
dc.title | Estimation of backbone model parameters for simulation of exposed column base plates | spa |
dcterms.bibliographicCitation | I. Piana, A.F.G. Calenzani Study of design methodologies of steel column bases Ibracon Struct. Mater. J., 11 (2018), pp. 203-243, 10.1590/s1983-41952018000100011 | spa |
dcterms.bibliographicCitation | Eröz Murat White Donald W., DesRoches Reginald, Direct analysis and design of steel frames accounting for partially restrained column base conditions J. Struct. Eng., 134 (2008), pp. 1508-1517, 10.1061/(ASCE)0733-9445(2008)134:9(1508 | spa |
dcterms.bibliographicCitation | J.P. Jaspart, D. Vandegans Application of the component method to column bases J. Constr. Steel Res., 48 (1998), pp. 89-106, 10.1016/S0143-974X(98)90196-1 | spa |
dcterms.bibliographicCitation | J.C. Ermopoulos, G.T. Michaltsos Analytical modelling of stress distribution under column base plates Second World Conf. Steel Constr., 46 (1998), p. 246, 10.1016/S0143-974X(98)80026-6 | spa |
dcterms.bibliographicCitation | J.E. Grauvilardell, D. Lee, J.F. Hajjar, R.J. Dexter Synthesis of design, testing and analysis research on steel column base plate connections in high-seismic zones 181 (2005) | spa |
dcterms.bibliographicCitation | K. Tsavdaridis, M. Shaheen, C. Baniotopoulos, E. Salem Analytical approach of anchor rod stiffness and Steel Base-plate calculation under tension Structures, 5 (2015), pp. 207-218, 10.1016/j.istruc.2015.11.001 | spa |
dcterms.bibliographicCitation | S. Khodaie, M.R. Mohamadi-shooreh, M. Mofid Parametric analyses on the initial stiffness of the SHS column base plate connections using FEM Eng. Struct., 34 (2012), pp. 363-370, 10.1016/j.engstruct.2011.09.026 | spa |
dcterms.bibliographicCitation | M.A.K. Fasaee, M.R. Banan, S. Ghazizadeh Capacity of exposed column base connections subjected to uniaxial and biaxial bending moments J. Constr. Steel Res., 148 (2018), pp. 361-370, 10.1016/j.jcsr.2018.05.025 | spa |
dcterms.bibliographicCitation | F. Zareian, A. Kanvinde Effect of column-base flexibility on the seismic response and safety of steel moment-resisting frames Earthquake Spectra, 29 (2013), pp. 1537-1559, 10.1193/030512EQS062M | spa |
dcterms.bibliographicCitation | M. Latour, G. Rizzano Mechanical modelling of exposed column base plate joints under cyclic loads J. Constr. Steel Res., 162 (2019), Article 105726, 10.1016/j.jcsr.2019.105726 | spa |
dcterms.bibliographicCitation | A.M. Kanvinde, S.J. Jordan, R.J. Cooke Exposed column base plate connections in moment frames — simulations and behavioral insights J. Constr. Steel Res., 84 (2013), pp. 82-93, 10.1016/j.jcsr.2013.02.015 | spa |
dcterms.bibliographicCitation | J.M. Fisher, L.A. Kloiber Design Guide 1: Base Plate and Anchor Rod Design (second edition) (2006) https://www.aisc.org/Design-Guide-1-Base-Plate-and-Anchor-Rod-Design-Second-Edition-Print#.XVfizOhKhPY | spa |
dcterms.bibliographicCitation | AISC 341 Seismic Provisions for Structural Steel Buildings https://www.aisc.org/globalassets/aisc/publications/standards/seismic-provisions-for-structural-steel-buildings-ansi-aisc-341-16.pdf (2022), Accessed 12th Nov 2018 | spa |
dcterms.bibliographicCitation | A. Kanvinde, D. Grilli, F. Zareian Rotational stiffness of exposed column base connections: experiments and analytical models J. Struct. Eng., 138 (2012), pp. 549-560, 10.1061/(ASCE)ST.1943-541X.0000495 | spa |
dcterms.bibliographicCitation | M. Latour, V. Piluso, G. Rizzano Rotational behaviour of column base plate connections: experimental analysis and modelling Eng. Struct., 68 (2014), pp. 14-23, 10.1016/j.engstruct.2014.02.037 | spa |
dcterms.bibliographicCitation | I. Gomez, A. Kanvinde, C. Smith Exposed Column Base Connections Subjected to Axial Compression and Flexure American Institute of Steel Construction, AISC, Chicago, IL USA (2010) | spa |
dcterms.bibliographicCitation | T. Falborski, A.S. Hassan, A.M. Kanvinde Column base fixity in steel moment frames: observations from instrumented buildings J. Constr. Steel Res., 168 (2020), Article 105993, 10.1016/j.jcsr.2020.105993 | spa |
dcterms.bibliographicCitation | A.S. Hassan, B. Song, C. Galasso, A. Kanvinde Seismic Performance of Exposed Column–Base Plate Connections with Ductile Anchor Rods J. Struct. Eng., 148 (2022), Article 04022028, 10.1061/(ASCE)ST.1943-541X.0003298 | spa |
dcterms.bibliographicCitation | C.A. Trautner, T. Hutchinson, P.R. Grosser, J.F. Silva Investigation of steel column–baseplate connection details incorporating ductile anchors J. Struct. Eng., 143 (2017), Article 04017074, 10.1061/(ASCE)ST.1943-541X.0001759 | spa |
dcterms.bibliographicCitation | A. Picard, D. Beaulieu Behaviour of a simple column base connection Can. J. Civ. Eng., 12 (1985), pp. 126-136, 10.1139/l85-013 | spa |
dcterms.bibliographicCitation | R.E. Melchers Column-base response under applied moment J. Constr. Steel Res., 23 (1992), pp. 127-143, 10.1016/0143-974X(92)90040-L | spa |
dcterms.bibliographicCitation | K.K. Hon, R.E. Melchers Experimental behaviour of steel column bases J. Constr. Steel Res., 9 (1988), pp. 35-50, 10.1016/0143-974X(88)90055-7 | spa |
dcterms.bibliographicCitation | F. Kavoura, B. Gencturk, M. Dawood Evaluation of Existing Provisions for Design of “Pinned” Column Base-Plate Connections (2018), 10.1016/j.jcsr.2018.05.030 | spa |
dcterms.bibliographicCitation | F. Kavoura, B. Gencturk, M. Dawood, M. Gurbuz Influence of base-plate connection stiffness on the design of low-rise metal buildings J. Constr. Steel Res., 115 (2015), pp. 169-178, 10.1016/j.jcsr.2015.08.005 | spa |
dcterms.bibliographicCitation | F. Kavoura, B. Gencturk, M. Dawood Reversed cyclic behavior of column-to-foundation connections in low-rise metal buildings J. Struct. Eng., 143 (2017), Article 04017095, 10.1061/(ASCE)ST.1943-541X.0001821 | spa |
dcterms.bibliographicCitation | C.G. Salmon, L. Schenker, B.G. Johnston Moment-rotation characteristics of column anchorages Trans. Am. Soc. Civ. Eng., 122 (1957), pp. 132-154, 10.1061/TACEAT.0007496 | spa |
dcterms.bibliographicCitation | J.Ch. Ermopoulos, G.N. Stamatopoulos Mathematical modelling of column base plate connections J. Constr. Steel Res., 36 (1996), pp. 79-100, 10.1016/0143-974X(95)00011-J | spa |
dcterms.bibliographicCitation | R.M. Drake, S.J. Elkin Beam-column base plate design-LRFD method Engl. J., 36 (1999), pp. 16-38 | spa |
dcterms.bibliographicCitation | A.M. Kanvinde, P. Higgins, R.J. Cooke, J. Perez, J. Higgins Column base connections for hollow steel sections: seismic performance and strength models J. Struct. Eng., 141 (2015), Article 04014171, 10.1061/(ASCE)ST.1943-541X.0001136 | spa |
dcterms.bibliographicCitation | M. Dumas, D. Beaulieu, A. Picard Characterization equations for steel column base connections Can. J. Civ. Eng., 33 (2006), pp. 409-420, 10.1139/l05-054 | spa |
dcterms.bibliographicCitation | H. Díaz, E. Nuñez, C. Oyarzo-Vera Monotonic response of exposed base plates of columns: numerical study and a new design method Metals, 220 (2020), p. 396, 10.3390/met10030396 | spa |
dcterms.bibliographicCitation | M. Latour, G. Rizzano A theoretical model for predicting the rotational capacity of steel base joints J. Constr. Steel Res., 91 (2013), pp. 89-99, 10.1016/j.jcsr.2013.08.009 | spa |
dcterms.bibliographicCitation | P. Torres Rodas, Z. Farzin, K. Amit Hysteretic model for exposed column–base connections J. Struct. Eng., 142 (2016), Article 04016137, 10.1061/(ASCE)ST.1943-541X.0001602 | spa |
dcterms.bibliographicCitation | G.N. Stamatopoulos, J.Ch. Ermopoulos Experimental and analytical investigation of steel column bases J. Constr. Steel Res., 67 (2011), pp. 1341-1357, 10.1016/j.jcsr.2011.03.007 | spa |
dcterms.bibliographicCitation | G. Abdollahzadeh, M. Ghobadi Mathematical modeling of column-base connections under monotonic loading Civ. Eng. Infrastruct. J., 47 (2014), pp. 255-272, 10.7508/ceij.2014.02.008 | spa |
dcterms.bibliographicCitation | A. Mohabeddine, Y.W. Koudri, J.A.F.O. Correia, J.M. Castro Rotation capacity of steel members for the seismic assessment of steel buildings Eng. Struct., 244 (2021), Article 112760, 10.1016/j.engstruct.2021.112760 | spa |
dcterms.bibliographicCitation | D.G. Lignos, H. Krawinkler Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading J. Struct. Eng., 137 (2011), pp. 1291-1302, 10.1061/(ASCE)ST.1943-541X.0000376 | spa |
dcterms.bibliographicCitation | Y.-C. You, D. Lee Development of improved exposed column-base plate strong-axis joints of low-rise steel buildings J. Constr. Steel Res., 169 (2020), Article 106062, 10.1016/j.jcsr.2020.106062 | spa |
dcterms.bibliographicCitation | C.A. Trautner, T. Hutchinson, P.R. Grosser, J.F. Silva Effects of detailing on the cyclic behavior of steel baseplate connections designed to promote anchor yielding J. Struct. Eng., 142 (2016), Article 04015117, 10.1061/(ASCE)ST.1943-541X.0001361 | spa |
dcterms.bibliographicCitation | CEN Eurocode 3: Design of steel structures - Part 1–8: Design of joints (EN 1993-1-8 :2005), Brussels European Comitee for Standarization (2005) | spa |
dcterms.bibliographicCitation | S. Demir, M. Husem, S. Pul Failure analysis of steel column-RC base connections under lateral cyclic loading Struct. Eng. Mech., 50 (2014), pp. 459-469, 10.12989/sem.2014.50.4.459 | spa |
dcterms.bibliographicCitation | J.-H. Choi, Y. Choi An experimental study on inelastic behavior for exposed-type steel column bases under three-dimensional loadings J. Mech. Sci. Technol., 27 (2013), pp. 747-759, 10.1007/s12206-012-0901-x | spa |
dcterms.bibliographicCitation | M. Fahmy, B. Stojadinovic, S.C. Goel Analytical and experimental studies on the seismic response of steel column bases, in: Vancouver, Canadá (1999), pp. 245-250 | spa |
dcterms.bibliographicCitation | J.J. Burda, A. Itani Studies of Seismic Behavior of Steel Base Plates CCEER 99-7, Center for Civil Engineering Earthquake Research (CEER), Reno, Nevada, USA (1999) | spa |
dcterms.bibliographicCitation | A.T. Wheeler, M.J. Clarke, G.J. Hancock, T.M. Murray Design model for bolted moment end plate connections joining rectangular hollow sections J. Struct. Eng., 124 (1998), pp. 164-173, 10.1061/(ASCE)0733-9445(1998)124:2(164) | spa |
dcterms.bibliographicCitation | F. Wald, I. Simek, Z. Sokol, J. Seifer The column-base stiffness tests, v semi-rigid behaviour of civil engineering structural connections Proc. Second State Art Workshop, Brussels (1994), pp. 273-282 | spa |
dcterms.bibliographicCitation | D.P. Thambiratnam, P. Paramasivam Base plates under axial loads and moments J. Struct. Eng., 112 (1986), pp. 1166-1181, 10.1061/(ASCE)0733-9445(1986)112:5(1166) | spa |
dcterms.bibliographicCitation | S. Chatterjee, A.S. Hadi, Regression Analysis by Example, Wiley, Somerset, 2015. https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=918623&entityid=urn:mace:eduserv.org.uk:athens:provider:liv.ac.uk (accessed March 9, 2022). | spa |
dcterms.bibliographicCitation | M. Aladsani, H.V. Burton, S. Abdullah, J. Wallace Explainable machine learning model for predicting drift capacity of reinforced concrete walls ACI Struct. J., 119 (2022), 10.14359/51734484 | spa |
dcterms.bibliographicCitation | H. Sun, H.V. Burton, H. Huang Machine learning applications for building structural design and performance assessment: state-of-the-art review J. Build. Eng., 33 (2021), Article 101816, 10.1016/j.jobe.2020.101816 | spa |
dcterms.bibliographicCitation | T. Obuchi, Y. Kabashima Cross validation in LASSO and its acceleration J. Stat. Mech. Theory Exp., 2016 (2016), Article 053304, 10.1088/1742-5468/2016/05/053304 | spa |
dcterms.bibliographicCitation | A.B. Kabir, A. Hasan, A.M. Billah Failure mode identification of column base plate connection using data-driven machine learning techniques Eng. Struct., 240 (2021), Article 112389, 10.1016/j.engstruct.2021.112389 | spa |
dcterms.bibliographicCitation | D. Nettleton Selection of Variables and Factor Derivation Commer. Data Min., Elsevier, in (2014), pp. 79-104, 10.1016/B978-0-12-416602-8.00006-6 | spa |
dcterms.bibliographicCitation | Simple Linear Regression, in: Regres. Anal. Ex., John Wiley & Sons, Inc., Hoboken, NJ, USA (2006), pp. 21-51, 10.1002/0470055464.ch2 | spa |
dcterms.bibliographicCitation | D.K. Dalal, M.J. Zickar Some common myths about centering predictor variables in moderated multiple Regression and polynomial Regression Organ. Res. Methods, 15 (2012), pp. 339-362, 10.1177/1094428111430540 | spa |
dcterms.bibliographicCitation | C.K. Ender, D. Tofighi Centering predictor variables in cross-sectional multilevel models: a new look at an old issue Psychol. Methods, 12 (2007), pp. 121-138, 10.1037/1082-989X.12.2.121 | spa |
dcterms.bibliographicCitation | J.A.S.P. Team JASP (Version 0.17.1) [Computer software] (2023) | spa |
dcterms.bibliographicCitation | T.G. Wakjira, A. Abushanab, U. Ebead, W. Alnahhal FAI: fast, accurate, and intelligent approach and prediction tool for flexural capacity of FRP-RC beams based on super-learner machine learning model Mater. Today Commun., 33 (2022), Article 104461, 10.1016/j.mtcomm.2022.104461 | spa |
dcterms.bibliographicCitation | A.S. Hassan, P. Torres-Rodas, L. Giulietti, A. Kanvinde Strength characterization of exposed column base plates subjected to axial force and biaxial bending Eng. Struct., 237 (2021), Article 112165, 10.1016/j.engstruct.2021.112165 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | https://doi.org/10.1016/j.jcsr.2024.109034 | |
dc.subject.keywords | Exposed-column-baseplates | spa |
dc.subject.keywords | Moment-rotation curves | spa |
dc.subject.keywords | Axial compression ratio | spa |
dc.subject.keywords | Regression models | spa |
dc.subject.keywords | Performance-based assessment | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ingeniería | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Civil | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.