Mostrar el registro sencillo del ítem

dc.contributor.authorBarrios, Erik
dc.contributor.authorPineda, Jesus
dc.contributor.authorRomero, Lenny A.
dc.contributor.authorMillan, María S.
dc.contributor.authorMarrugo, Andres G.
dc.date.accessioned2024-09-16T16:52:23Z
dc.date.available2024-09-16T16:52:23Z
dc.date.issued2024-08
dc.date.submitted2024-09-13
dc.identifier.citationBarrios, Erik & Pineda, Jesús & Romero, Lenny & Millán, María & Marrugo, Andrés. (2024). Hybrid lighting enhances color accuracy in DLP-based 3D imaging. Optical Engineering. 63. 10.1117/1.OE.63.8.083105.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12739
dc.description.abstractColor accuracy is of immense importance in various fields, including biomedical applications, cosmetics, and multimedia. Achieving precise color measurements using diverse lighting sources is a persistent challenge. Recent advancements have resulted in the integration of LED-based Digital Light Processing (DLP) technology into many scanning devices for 3D imaging, often serving as the primary lighting source. However, such setups are susceptible to color-accuracy issues. Our study delves into DLP-based 3D imaging, specifically focusing on the use of hybrid lighting to enhance color accuracy. We presented an empirical dataset containing skin tone patches captured under various lighting conditions, including combinations and variations in indoor ambient light. A comprehensive qualitative and quantitative analysis of color differences (∆E 00 ) across the dataset was performed. Our results support the integration of DLP technology with supplementary light sources to achieve optimal color correction outcomes, particularly in skin tone reproduction, which has significant implications for biomedical image analysis and other color-critical applications.spa
dc.format.extent19 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOptical Engineering No. 63spa
dc.titleHybrid lighting enhances color accuracy in DLP-based 3D imagingspa
dcterms.bibliographicCitationA. G. Marrugo, F. Gao, and S. Zhang, “State-of-the-art active optical techniques for threedimensional surface metrology: a review [invited],” Journal of the Optical Society of America. A 37(9), B60–B77 (2020).spa
dcterms.bibliographicCitationH. Jiang, Z. Lin, Y. Li, et al., “Projection optical engine design based on tri-color leds and digital light processing technology,” Applied Optics 60(23), 6971–6977 (2021).spa
dcterms.bibliographicCitationR. Khan, Y. Yang, Q. Liu, et al., “Deep image enhancement for ill light imaging,” JOSA A 38(6), 827–839 (2021)spa
dcterms.bibliographicCitationD. Kalustova, V. Kornaga, A. Rybalochka, et al., “Color temperature tunable rgbw cluster with optimize color rendering and efficacy,” Optical Engineering 62(4), 045102–045102 (2023).spa
dcterms.bibliographicCitationS. Tanaka, A. Kakinuma, N. Kamijo, et al., “Auto white balance method using a pigmentation separation technique for human skin color,” Optical Review 24(1), 17–26 (2017)spa
dcterms.bibliographicCitationK. L. Hanlon, G. Wei, L. Correa-Selm, et al., “Dermoscopy and skin imaging light sources: a comparison and review of spectral power distribution and color consistency,” Journal of Biomedical Optics 27(8), 080902–080902 (2022).spa
dcterms.bibliographicCitationK. Xiao, J. M. Yates, F. Zardawi, et al., “Characterising the variations in ethnic skin colours: a new calibrated data base for human skin,” Skin Research and Technology 23(1), 21–29 (2017).spa
dcterms.bibliographicCitationM. Corbalan, M. S. Millan, and M. J. Yzuel, “Color measurement in standard CIELAB coordinates using a 3CCD camera: correction for the influence of the light source,” Optical Engineering 39(6), 1470–1476 (2000).spa
dcterms.bibliographicCitationM. D. Fairchild, Color appearance models, John Wiley & Sons (2013).spa
dcterms.bibliographicCitationA. Gijsenij, T. Gevers, and J. Van De Weijer, “Computational color constancy: Survey and experiments,” IEEE transactions on image processing 20(9), 2475–2489 (2011).spa
dcterms.bibliographicCitationJ. Yang, M. Cai, and Z. Zhou, “Evolving convolution neural network by optimal regularization random vector functional link for computational color constancy,” Optical Engineering 61(10), 103102–103102 (2022)spa
dcterms.bibliographicCitationV. Agarwal, B. R. Abidi, A. Koschan, et al., “An overview of color constancy algorithms,” Journal of Pattern Recognition Research 1(1), 42–54 (2006)spa
dcterms.bibliographicCitationD. H. Foster, “Color constancy,” Vision Research 51(7), 674–700 (2011).spa
dcterms.bibliographicCitationD. Yung, K. Andy, R. T. Hsung, et al., “Comparison of the colour accuracy of a singlelens reflex camera and a smartphone camera in a clinical context,” Journal of Dentistry 137, 104681 (2023).spa
dcterms.bibliographicCitationJ. Xu and S. Zhang, “Status, challenges, and future perspectives of fringe projection profilometry,” Optics and Lasers in Engineering 135, 106193 (2020)spa
dcterms.bibliographicCitationJ. Pineda, R. Vargas, L. A. Romero, et al., “Robust automated reading of the skin prick test via 3d imaging and parametric surface fitting,” PloS one 14(10), e0223623 (2019).spa
dcterms.bibliographicCitationS. Han, I. Sato, T. Okabe, et al., “Fast spectral reflectance recovery using dlp projector,” International Journal of Computer Vision 110, 172–184 (2014).spa
dcterms.bibliographicCitationS. Voisin, D. L. Page, S. Foufou, et al., “Color influence on accuracy of 3d scanners based on structured light,” Proc. SPIE 6070, 72–80 (2006).spa
dcterms.bibliographicCitationH. Takiwaki, L. Overgaard, and J. Serup, “Comparison of narrow-band reflectance spectrophotometric and tristimulus colorimetric measurements of skin color: Twenty-three anatomical sites evaluated by the dermaspectrometer® and the chroma meter cr-200®,” Skin Pharmacology and Physiology 7(4), 217–225 (1994).spa
dcterms.bibliographicCitationA. R. Matias, M. Ferreira, P. Costa, et al., “Skin colour, skin redness and melanin biometric measurements: comparison study between antera® 3d, mexameter® and colorimeter®,” Skin Research and Technology 21(3), 346–362 (2015).spa
dcterms.bibliographicCitationS. Tedla, Y. Wang, M. Patel, et al., “Analyzing color imaging failure on consumer-grade cameras,” JOSA A 39(6), B21–B27 (2022)spa
dcterms.bibliographicCitationW. Chen, Z. Huang, Q. Liu, et al., “Evaluating the color preference of lighting: the light booth matters,” Optics Express 28(10), 14874–14883 (2020).spa
dcterms.bibliographicCitationR. Roa, R. Huertas, M. A. Lopez- ´ Alvarez, ´ et al., “A comparison between illuminants and light-source simulators,” Optica Pura y Aplicada 41(3), 291–300 (2008)spa
dcterms.bibliographicCitationC. C. Cooksey, D. W. Allen, and B. K. Tsai, “Reference data set of human skin reflectance,” J. Res. Nat. Inst. Standards Technol. 122, 1–5 (2017).spa
dcterms.bibliographicCitationC. S. McCamy, H. Marcus, and J. G. Davidson, “A color-rendition chart,” J. App. Photog. Eng 2(3), 95–99 (1976).spa
dcterms.bibliographicCitationE. Kirchner, C. van Wijk, H. van Beek, et al., “Exploring the limits of color accuracy in technical photography,” Heritage Science 9(1), 1–13 (2021).spa
dcterms.bibliographicCitationH. Wannous, Y. Lucas, S. Treuillet, et al., “Improving color correction across camera and illumination changes by contextual sample selection,” Journal of Electronic Imaging 21(2), 023015 (2012).spa
dcterms.bibliographicCitationM. Luo and R. Hunt, “The structure of the cie 1997 colour appearance model (ciecam97s),” Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Franc¸ais de la Couleur 23(3), 138–146 (1998).spa
dcterms.bibliographicCitationX. Li, G. Hou, L. Tan, et al., “A hybrid framework for underwater image enhancement,” IEEE Access 8, 197448–197462 (2020).spa
dcterms.bibliographicCitationG. Sharma, W. Wu, and E. N. Dalal, “The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations,” Color Research and Application 30(1), 21–30 (2005)spa
dcterms.bibliographicCitationR. Vargas, A. G. Marrugo, S. Zhang, et al., “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Applied Optics 59(13), D163–D169 (2020).spa
dcterms.bibliographicCitationR. Vargas, L. A. Romero, S. Zhang, et al., “Pixel-wise rational model for a structured light system,” Optics Letters 48(10), 2712–2715 (2023).spa
dcterms.bibliographicCitationS. Zhang, “Absolute phase retrieval methods for digital fringe projection profilometry: A review,” Optics and Lasers in Engineering 107, 28–37 (2018).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1117/1.OE.63.8.083105.
dc.subject.keywordsColor accuracyspa
dc.subject.keywordsDigital Light Processingspa
dc.subject.keywords3D imagingspa
dc.subject.keywordsFringe projection profilometryspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.