Mostrar el registro sencillo del ítem

dc.contributor.authorDalponte, Michele
dc.contributor.authorSolano-Correa, Yady Tatiana
dc.contributor.authorMarinelli, Daniele
dc.contributor.authorGianelle, Damiano
dc.date.accessioned2024-09-12T14:05:32Z
dc.date.available2024-09-12T14:05:32Z
dc.date.issued2023-10-20
dc.date.submitted2024-09-11
dc.identifier.citationM. Dalponte; Y. T. Solano-Correa; D. Marinelli; D. Gianelle, "Windthrows detection with satellite remote sensing data: a comparison among Sentinel-2, Planet, and COSMO Sky-Med data," in 2023 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Pasadena, United States of America, Jul. 2023. DOI: 10.1109/IGARSS52108.2023.10282036.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12738
dc.description.abstractWind disturbances represent a great source of damage in forests, and an assessment of such damage is very important for adequate forest management. Remote sensing is an effective tool for this purpose and can be used by considering different data sources: active vs passive sensors. While passive sensors can provide a direct view of windthrows, they are often affected by clouds. Active sensors have the significant advantage of not being affected by the presence of clouds which can be prevalent in certain seasons in mountain areas. The objective of this study is to compare the capability of active (Cosmo SkyMed SAR sensor) and passive (Sentinel-2 and Planet sensors) data in detecting windthrows in different seasons of image acquisition. A study site was analysed, located in the Trentino-South Tyrol region (Italy), which was affected by the Vaia storm on 27-30 October 2018, which caused significant forest damage.spa
dc.format.extent4 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceIEEE International Geoscience and Remote Sensing Symposium (IGARSS)spa
dc.titleWindthrows Detection With Satellite Remote Sensing Data: A Comparison Among Sentinel-2, Planet, And Cosmo Sky-Med Dataspa
dcterms.bibliographicCitationM.-J. Schelhaas, "Impacts of natural disturbances on the development of European forest resources: application of model approaches from tree and stand levels to large-scale scenarios", Dissertationes Forestales, vol. 2008, no. 56, 2008.spa
dcterms.bibliographicCitationR. L. Rich, L. Frelich, P. B. Reich and M. E. Bauer, "Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution satellite imagery and field data", Remote Sensing of Environment, vol. 114, no. 2, pp. 299-308, Feb. 2010.spa
dcterms.bibliographicCitationK. Einzmann, M. Immitzer, S. Böck, O. Bauer, A. Schmitt and C. Atzberger, "Windthrow Detection in European Forests with Very High-Resolution Optical Data", Forests, vol. 8, no. 1, pp. 21, Jan. 2017.spa
dcterms.bibliographicCitationD. Jonikavičius and G. Mozgeris, "Rapid assessment of wind storm-caused forest damage using satellite images and stand-wise forest inventory data", iForest - Biogeosciences and Forestry, vol. 6, no. 3, pp. 150-155, Jun. 2013.spa
dcterms.bibliographicCitationM. Rüetschi, D. Small and L. Waser, "Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data", Remote Sensing, vol. 11, no. 2, pp. 115, Jan. 2019.spa
dcterms.bibliographicCitationM. Schwarz, C. Steinmeier, F. Holecz, O. Stebler and H. Wagner, "Detection of Windthrow in Mountainous Regions with Different Remote Sensing Data and Classification Methods", Scandinavian Journal of Forest Research, vol. 18, no. 6, pp. 525-536, Dec. 2003.spa
dcterms.bibliographicCitationM. Dalponte, S. Marzini, Y. T. Solano-Correa, G. Tonon, L. Vescovo and D. Gianelle, "Mapping forest windthrows using high spatial resolution multispectral satellite images", International Journal of Applied Earth Observation and Geoinformation, vol. 93, pp. 102206, Dec. 2020.spa
dcterms.bibliographicCitationI. Vorovencii, "Detection of environmental changes due to windthrows using Landsat 7 ETM+ satellite images", Environmental Engineering and Management Journal, vol. 13, no. 3, pp. 565-576, 2014.spa
dcterms.bibliographicCitationF. Wang and Y. J. Xu, "Comparison of remote sensing change detection techniques for assessing hurricane damage to forests", Environmental Monitoring and Assessment, vol. 162, no. 1–4, pp. 311-326, Mar. 2010.spa
dcterms.bibliographicCitationG. Chirici et al., "Forest damage inventory after the ‘Vaia’ storm in Italy", Forest@ - Rivista di Selvicoltura ed Ecologia Forestale, vol. 16, no. 1, pp. 3-9, Feb. 2019.spa
dcterms.bibliographicCitationM. Nyström, J. Holmgren, J. E. S. Fransson and H. Olsson, "Detection of windthrown trees using airborne laser scanning", International Journal of Applied Earth Observation and Geoinformation, vol. 30, pp. 21-29, Aug. 2014.spa
dcterms.bibliographicCitationF. Pirotti, D. Travaglini, F. Giannetti, E. Kutchartt, F. Bottalico and G. Chirici, "Kernel feature cross-correlation for unsupervised quantification of damage from windthrow in forests", ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, vol. XLI-B7, pp. 17-22, Jun. 2016.spa
dcterms.bibliographicCitationD. E. Kislov and K. A. Korznikov, "Automatic Windthrow Detection Using Very-High-Resolution Satellite Imagery and Deep Learning", Remote Sensing, vol. 12, no. 7, pp. 1145, Apr. 2020.spa
dcterms.bibliographicCitationZ. M. Hamdi, M. Brandmeier and C. Straub, "Forest Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data", Remote Sensing, vol. 11, no. 17, pp. 1976, Aug. 2019.spa
dcterms.bibliographicCitationW. Deigele, M. Brandmeier and C. Straub, "A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data", Remote Sensing, vol. 12, no. 13, pp. 2121, Jul. 2020.spa
dcterms.bibliographicCitationF. Duan, Y. Wan and L. Deng, "A Novel Approach for Coarse-to-Fine Windthrown Tree Extraction Based on Unmanned Aerial Vehicle Images", Remote Sensing, vol. 9, no. 4, pp. 306, Mar. 2017.spa
dcterms.bibliographicCitationR. M. Green, "The sensitivity of SAR backscatter to forest windthrow gaps", International Journal of Remote Sensing, vol. 19, no. 12, pp. 2419-2425, Jan. 1998.spa
dcterms.bibliographicCitationJ. E. S. Fransson, F. Walter, K. Blennow, A. Gustavsson and L. M. H. Ulander, "Detection of storm-damaged forested areas using airborne CARABAS-II VHF SAR image data", IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 10, pp. 2170-2175, Jan. 2002.spa
dcterms.bibliographicCitationL. M. H. Ulander et al., "Mapping of wind-thrown forests in Southern Sweden using space- and airborne SAR", Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium 2005. IGARSS ’05, pp. 3619-3622, 2005.spa
dcterms.bibliographicCitationL. E. B. Eriksson, J. E. S. Fransson, M. J. Soja and M. Santoro, "Backscatter signatures of wind-thrown forest in satellite SAR images", 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 6435-6438, Jul. 2012.spa
dcterms.bibliographicCitationA. Thiele, M. Boldt and S. Hinz, "Automated detection of storm damage in forest areas by analyzing TerraSAR-X data", 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 1672-1675, Jul. 2012.spa
dcterms.bibliographicCitationM. A. Tanase, C. Aponte, S. Mermoz, A. Bouvet, T. Le Toan and M. Heurich, "Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park", Remote Sensing of Environment, vol. 209, pp. 700-711, May 2018.spa
dcterms.bibliographicCitationG. Vaglio Laurin, N. Puletti, C. Tattoni, C. Ferrara and F. Pirotti, "Estimated Biomass Loss Caused by the Vaia Windthrow in Northern Italy: Evaluation of Active and Passive Remote Sensing Options", Remote Sensing, vol. 13, no. 23, pp. 4924, Dec. 2021.spa
dcterms.bibliographicCitationM. Lazecky, S. Wadhwa, M. Mlcousek and J. J. Sousa, "Simple method for identification of forest windthrows from Sentinel-1 SAR data incorporating PCA", Procedia Computer Science, vol. 181, pp. 1154-1161, 2021.spa
dcterms.bibliographicCitationF. Bovolo and L. Bruzzone, "A detail-preserving scale-driven approach to change detection in multitemporal SAR images", IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 12, pp. 2963-2972, Dec. 2005.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/IGARSS52108.2023.10282036
dc.subject.keywordsWindthrowsspa
dc.subject.keywordsRemote Sensingspa
dc.subject.keywordsSentinel- 2spa
dc.subject.keywordsPlanetspa
dc.subject.keywordsCosmo SkyMedspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_c94fspa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.