Mostrar el registro sencillo del ítem
Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil
dc.contributor.author | Camacho-De Angulo, Yineth Viviana | |
dc.contributor.author | Arrechea-Castillo, Darwin Alexis | |
dc.contributor.author | Cantero-Mosquera, Yessica Carolina | |
dc.contributor.author | Solano-Correa, Yady Tatiana | |
dc.contributor.author | Roisenberg, Mauro | |
dc.date.accessioned | 2024-09-12T14:02:50Z | |
dc.date.available | 2024-09-12T14:02:50Z | |
dc.date.issued | 2024-07-12 | |
dc.date.submitted | 2024-09-11 | |
dc.identifier.citation | Y. V. Camacho-De Angulo; D.A. Arrechea-Castillo; Y. C. Cantero-Mosquera; Y. T. Solano-Correa; M. Roisenberg, "Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10642298. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12733 | |
dc.description.abstract | This study delves into the agricultural landscape of Bahia, Brazil, employing the Mask R-CNN deep learning model with satellite imagery to detect three crop growth stages (early, mid-growth and maturity stage). This model is suited to the region’s complex terrain and diverse crop patterns, providing accurate instance segmentation crucial for monitoring crop development. Remarkable results have been achieved with a limited dataset of just 54 images for training, underscoring the model’s efficiency in scenarios where extensive data collection is challenging. The validation metric chosen for this study is the Intersection over Union (IoU), preferred for its ability to quantify the pixel-wise overlap between the predicted and actual segmentations, offering a clear measure of accuracy in spatial contexts. An IoU of 90% was obtained, demonstrating Mask R-CNN’s robustness and potential for precision agriculture in challenging environments. | spa |
dc.format.extent | 4 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | EEE International Geoscience and Remote Sensing Symposium (IGARSS) | spa |
dc.title | Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil | spa |
dcterms.bibliographicCitation | D. S. Bullock, M. Boerngen, H. Tao, B. Maxwell, J. D. Luck, L. Shiratsuchi, L. Puntel, and N. F. Martin, “The data-intensive farm management project: changing agronomic research through on-farm precision experimentation,” Agronomy journal, vol. 111, no. 6, pp. 2736–2746, 2019. | spa |
dcterms.bibliographicCitation | K. Malhotra and M. Firdaus, “Application of artificial intelligence in iot security for crop yield prediction,” ResearchBerg Review of Science and Technology, vol. 2, no. 1, pp. 136–157, 2022. | spa |
dcterms.bibliographicCitation | R. P. Sishodia, R. L. Ray, and S. K. Singh, “Applications of remote sensing in precision agriculture: A review,” Remote Sensing, vol. 12, no. 19, p. 3136, 2020. | spa |
dcterms.bibliographicCitation | A. Robinson, Bahia: The Heart of Brazil’s Northeast. Bradt Travel Guides, 2010. | spa |
dcterms.bibliographicCitation | E. Benami, Shaping the Producer’s Problem: Essays on Land-Use Zoning and Certification in the Sustainability of Brazilian Oil Palm and Coffee. Stanford University, 2018. | spa |
dcterms.bibliographicCitation | K. G. Eng˚as, J. Z. Raja, and I. F. Neufang, “Decoding technological frames: An exploratory study of access to and meaningful engagement with digital technologies in agriculture,” Technological Forecasting and Social Change, vol. 190, p. 122405, 2023 | spa |
dcterms.bibliographicCitation | Y. T. Solano-Correa, K. Meshkini, F. Bovolo, and L. Bruzzone, “Automatic large-scale precise mapping and monitoring of agricultural fields at country level with sentinel-2 sits,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 3131–3145, 2022. | spa |
dcterms.bibliographicCitation | Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “A semi-supervised crop-type classification based on sentinel-2 ndvi satellite image time series and phenological parameters,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 457–460, 2019. | spa |
dcterms.bibliographicCitation | D.-C. Hsiou, F. Huang, F. J. Tey, T.-Y. Wu, and Y.-C. Lee, “An automated crop growth detection method using satellite imagery data,” Agriculture, vol. 12, no. 4, p. 504, 2022. | spa |
dcterms.bibliographicCitation | CVAT.ai Corporation, “Computer Vision Annotation Tool (CVAT).” | spa |
dcterms.bibliographicCitation | W. Abdulla, “Mask r-cnn for object detection and instance segmentation on keras and tensorflow.” https://github.com/matterport/MaskRCNN, 2017. | spa |
dcterms.bibliographicCitation | T. N. Carlson and D. A. Ripley, “On the relation between NDVI, fractional vegetation cover, and leaf area index,” vol. 62, no. 3, pp. 241–252. | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1109/IGARSS53475.2024.10642298 | |
dc.subject.keywords | Crops Growth | spa |
dc.subject.keywords | Deep Learning | spa |
dc.subject.keywords | Image Instance Segmentation | spa |
dc.subject.keywords | Remote Sensing | spa |
dc.subject.keywords | Mask R-CNN | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ciencias Básicas | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_c94f | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.