Mostrar el registro sencillo del ítem

dc.contributor.authorCamacho-De Angulo, Yineth Viviana
dc.contributor.authorArrechea-Castillo, Darwin Alexis
dc.contributor.authorCantero-Mosquera, Yessica Carolina
dc.contributor.authorSolano-Correa, Yady Tatiana
dc.contributor.authorRoisenberg, Mauro
dc.date.accessioned2024-09-12T14:02:50Z
dc.date.available2024-09-12T14:02:50Z
dc.date.issued2024-07-12
dc.date.submitted2024-09-11
dc.identifier.citationY. V. Camacho-De Angulo; D.A. Arrechea-Castillo; Y. C. Cantero-Mosquera; Y. T. Solano-Correa; M. Roisenberg, "Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10642298.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12733
dc.description.abstractThis study delves into the agricultural landscape of Bahia, Brazil, employing the Mask R-CNN deep learning model with satellite imagery to detect three crop growth stages (early, mid-growth and maturity stage). This model is suited to the region’s complex terrain and diverse crop patterns, providing accurate instance segmentation crucial for monitoring crop development. Remarkable results have been achieved with a limited dataset of just 54 images for training, underscoring the model’s efficiency in scenarios where extensive data collection is challenging. The validation metric chosen for this study is the Intersection over Union (IoU), preferred for its ability to quantify the pixel-wise overlap between the predicted and actual segmentations, offering a clear measure of accuracy in spatial contexts. An IoU of 90% was obtained, demonstrating Mask R-CNN’s robustness and potential for precision agriculture in challenging environments.spa
dc.format.extent4 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceEEE International Geoscience and Remote Sensing Symposium (IGARSS)spa
dc.titleDetection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazilspa
dcterms.bibliographicCitationD. S. Bullock, M. Boerngen, H. Tao, B. Maxwell, J. D. Luck, L. Shiratsuchi, L. Puntel, and N. F. Martin, “The data-intensive farm management project: changing agronomic research through on-farm precision experimentation,” Agronomy journal, vol. 111, no. 6, pp. 2736–2746, 2019.spa
dcterms.bibliographicCitationK. Malhotra and M. Firdaus, “Application of artificial intelligence in iot security for crop yield prediction,” ResearchBerg Review of Science and Technology, vol. 2, no. 1, pp. 136–157, 2022.spa
dcterms.bibliographicCitationR. P. Sishodia, R. L. Ray, and S. K. Singh, “Applications of remote sensing in precision agriculture: A review,” Remote Sensing, vol. 12, no. 19, p. 3136, 2020.spa
dcterms.bibliographicCitationA. Robinson, Bahia: The Heart of Brazil’s Northeast. Bradt Travel Guides, 2010.spa
dcterms.bibliographicCitationE. Benami, Shaping the Producer’s Problem: Essays on Land-Use Zoning and Certification in the Sustainability of Brazilian Oil Palm and Coffee. Stanford University, 2018.spa
dcterms.bibliographicCitationK. G. Eng˚as, J. Z. Raja, and I. F. Neufang, “Decoding technological frames: An exploratory study of access to and meaningful engagement with digital technologies in agriculture,” Technological Forecasting and Social Change, vol. 190, p. 122405, 2023spa
dcterms.bibliographicCitationY. T. Solano-Correa, K. Meshkini, F. Bovolo, and L. Bruzzone, “Automatic large-scale precise mapping and monitoring of agricultural fields at country level with sentinel-2 sits,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 3131–3145, 2022.spa
dcterms.bibliographicCitationY. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “A semi-supervised crop-type classification based on sentinel-2 ndvi satellite image time series and phenological parameters,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 457–460, 2019.spa
dcterms.bibliographicCitationD.-C. Hsiou, F. Huang, F. J. Tey, T.-Y. Wu, and Y.-C. Lee, “An automated crop growth detection method using satellite imagery data,” Agriculture, vol. 12, no. 4, p. 504, 2022.spa
dcterms.bibliographicCitationCVAT.ai Corporation, “Computer Vision Annotation Tool (CVAT).”spa
dcterms.bibliographicCitationW. Abdulla, “Mask r-cnn for object detection and instance segmentation on keras and tensorflow.” https://github.com/matterport/MaskRCNN, 2017.spa
dcterms.bibliographicCitationT. N. Carlson and D. A. Ripley, “On the relation between NDVI, fractional vegetation cover, and leaf area index,” vol. 62, no. 3, pp. 241–252.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/IGARSS53475.2024.10642298
dc.subject.keywordsCrops Growthspa
dc.subject.keywordsDeep Learningspa
dc.subject.keywordsImage Instance Segmentationspa
dc.subject.keywordsRemote Sensingspa
dc.subject.keywordsMask R-CNNspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_c94fspa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.