Mostrar el registro sencillo del ítem

dc.contributor.authorCamacho-De Angulo, Yineth Viviana
dc.contributor.authorRosa, Nicolas Cechinel
dc.contributor.authorSolano-Correa, Yady Tatiana
dc.contributor.authorRoisenberg, Mauro
dc.date.accessioned2024-09-12T14:01:44Z
dc.date.available2024-09-12T14:01:44Z
dc.date.issued2024-07-12
dc.date.submitted2024-09-11
dc.identifier.citationY. V. Camacho-De Angulo; N. C. Rosa; Y. T. Solano-Correa; M. Roisenberg, "Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10642369.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12732
dc.description.abstractWildfires in the Brazilian Amazon have raised significant concerns owing to the environmental, social, and global impacts associated with these events. They have led to habitat loss for various species and release of substantial amounts of carbon dioxide into the atmosphere. Thereby contributing to climate change and deterioration of air quality due to pollutants emission. The integration of advanced technologies, including high-spatial resolution satellite data and image processing algorithms, enables a more precise and comprehensive understanding of the wildfire scenario. This research introduces a model based on deep learning that can be applied over Sentinel-2 images to reliably detect fire scars with an accuracy above 90% (92% on training data and 82% on validation data). A SpectrumNet convolutional neural network was employed, incorporating features extracted from spectral bands at 10m and 20m.spa
dc.format.extent4 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceIEEE International Geoscience and Remote Sensing Symposium (IGARSS)spa
dc.titleFire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learningspa
dcterms.bibliographicCitationS. Singh, “Forest fire emissions: A contribution to global climate change,” Frontiers in Forests and Global Change, vol. 5, 11 2022.spa
dcterms.bibliographicCitationF. Carta, C. Zidda, M. Putzu, D. Loru, M. Anedda, and D. Giusto, “Advancements in forest fire prevention: A comprehensive survey,” Sensors, vol. 23, no. 14, p. 6635, 2023.spa
dcterms.bibliographicCitationG. Martins, J. Nogueira, A. Setzer, and F. Morelli, “Comparison between different versions of inpe’s fire risk model for the brazilian biomes,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-3/W12-2020, pp. 119–124, 2020.spa
dcterms.bibliographicCitationK. Covey, F. Soper, S. Pangala, A. Bernardino, Z. Pagliaro, L. Basso, H. Cassol, P. Fearnside, D. Navarrete, S. Novoa, H. Sawakuchi, T. Lovejoy, J. Marengo, C. A. Peres, J. Baillie, P. Bernasconi, J. Camargo, C. Freitas, B. Hoffman, G. B. Nardoto, I. Nobre, J. Mayorga, R. Mesquita, S. Pavan, F. Pinto, F. Rocha, R. de Assis Mello, A. Thuault, A. A. Bahl, and A. Elmore, “Carbon and beyond: The biogeochemistry of climate in a rapidly changing amazon,” Frontiers in Forests and Global Change, vol. 4, 3 2021.spa
dcterms.bibliographicCitationA. Saleh, M. A. Zulkifley, H. H. Harun, F. Gaudreault, I. Davison, and M. Spraggon, “Forest fire surveillance systems: A review of deep learning methods,” Heliyon, vol. 10, no. 1, p. e23127, 2024.spa
dcterms.bibliographicCitationB. Leblon, L. Bourgeau-Chavez, and J. San-Miguel- Ayanz, “Use of remote sensing in wildfire management,” in Sustainable Development (S. Curkovic, ed.), ch. 3, Rijeka: IntechOpen, 2012.spa
dcterms.bibliographicCitationR. Libonati, C. C. DaCamara, A. W. Setzer, F. Morelli, and A. E. Melchiori, “An algorithm for burned area detection in the brazilian cerrado using 4 μm modis imagery,” Remote sensing, vol. 7, no. 11, pp. 15782– 15803, 2015.spa
dcterms.bibliographicCitationI. Mancilla-Wulff, J. Carrasco, C. Pais, A. Miranda, and A. Weintraub, “Two scalable approaches for burnedarea mapping using u-net and landsat imagery,” arXiv preprint arXiv:2311.17368, 2023.spa
dcterms.bibliographicCitationD. N. Gonc¸alves, J. M. Junior, A. C. Carrilho, P. R. Acosta, A. P. M. Ramos, F. D. G. Gomes, L. P. Osco, M. da Rosa Oliveira, J. A. C. Martins, G. A. D. J´unior, et al., “Transformers for mapping burned areas in brazilian pantanal and amazon with planetscope imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 116, p. 103151, 2023.spa
dcterms.bibliographicCitationG. Tejada, E. B. G¨orgens, A. Ovando, and J. P. Ometto, “Mapping data gaps to estimate biomass across brazilian amazon forests,” Forest Ecosystems, vol. 7, pp. 1–15, 2020.spa
dcterms.bibliographicCitationP. B. T. das Neves, C. J. C. Blanco, A. A. A. M. Duarte, F. B. S. das Neves, I. B. S. das Neves, and M. H. d. P. dos Santos, “Amazon rainforest deforestation influenced by clandestine and regular roadway network,” Land Use Policy, vol. 108, p. 105510, 2021.spa
dcterms.bibliographicCitationC. S. Cronan, “Tropical ecology and deforestation,” in Ecology and Ecosystems Analysis, pp. 241–249, Springer, 2023.spa
dcterms.bibliographicCitationR. D. Garrett, F. Cammelli, J. Ferreira, S. A. Levy, J. Valentim, and I. Vieira, “Forests and sustainable development in the brazilian amazon: history, trends, and future prospects,” Annual Review of Environment and Resources, vol. 46, pp. 625–652, 2021.spa
dcterms.bibliographicCitationA. A. Ioris, “Rethinking brazil’s pantanal wetland: Beyond narrow development and conservation debates,” The Journal of Environment & Development, vol. 22, no. 3, pp. 239–260, 2013.spa
dcterms.bibliographicCitationJ. J. Senecal, J. W. Sheppard, and J. A. Shaw, “Efficient convolutional neural networks for multi-spectral image classification,” in 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2019.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/IGARSS53475.2024.10642369
dc.subject.keywordsDeep Learningspa
dc.subject.keywordsRemote Sensingspa
dc.subject.keywordsSemantic Segmentationspa
dc.subject.keywordsWildfiresspa
dc.subject.keywordsBrazilian Amazonspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_c94fspa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.