Mostrar el registro sencillo del ítem

dc.contributor.authorCohen-Manrique, Carlos S.
dc.contributor.authorSolano-Correa, Yady Tatiana
dc.contributor.authorVilla-Ramírez, Jose L.
dc.contributor.authorAlvarez-Month, Alex A.
dc.date.accessioned2024-09-12T13:59:57Z
dc.date.available2024-09-12T13:59:57Z
dc.date.issued2024-06-10
dc.date.submitted2024-09-11
dc.identifier.citationC.S. Cohen-Manrique; Y. T. Solano-Correa; J.L. Villa-Ramírez; A.A. Alvarez-Month, "Impact of land cover variations on the Morroa aquifer (Colombia) static and dynamic levels through remote sensing analysis," in Proc. SPIE 13037, Geospatial Informatics XIV, 1303704 (10 June 2024). DOI: https://doi.org/10.1117/12.3014190.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12729
dc.description.abstractThe Morroa aquifer plays a crucial role supplying drinking water to around one million residents across Sucre, Córdoba, and Bolívar departments in Colombia. However, it faces severe water stress, ranking as the second most overexploited aquifer globally according to recent research using the Groundwater Footprint (GF) indicator. This situation threatens the sustainability of the aquifer and the well-being of the region's inhabitants who rely on it. To tackle this challenge, CARSUCRE, the entity responsible for aquifer management, has implemented various strategies. These include establishing a monitoring network with piezometers to track static and dynamic aquifer levels and conducting civil works to redirect rainfall runoff towards artificial recharge projects. Yet, the impact of vegetation variations in the recharge areas of the aquifer levels remains uncertain due to many different factors like drought, heavy rainfall, and economic changes. This research introduces a methodology that leverages remote sensing data, particularly high-resolution images from the Planet platform (3m), combined with land cover analysis in piezometer influence areas. The primary aim is to assess how changes in vegetation affect both static and dynamic levels of the Morroa Aquifer and then identify strategies to enhance land cover and improve water capture. The results obtained show a significant correlation between NDVI, EVI, and LULC for the aquifer recharge zone, with an average of 0.858 for all applied tools. These findings provide valuable information for the management and preservation of this vital water resource in the region.spa
dc.format.extent9 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceProceedings Volume 13037, Geospatial Informatics XIVspa
dc.titleImpact of land cover variations on the Morroa aquifer (Colombia) static and dynamic levels through remote sensing analysisspa
dcterms.bibliographicCitationAranguren-Díaz, Y., Galán-Freyle, N. J., Guerra, A., Manares-Romero, A., Pacheco-Londoño, L. C., & Machado- Sierra, E. Aquifers and Groundwater: Challenges and Opportunities in Water Resource Management in Colombia. Water, 16(5), 685. (2024).spa
dcterms.bibliographicCitationCardona-Almeida, C., & Suárez, A. Integrated Water Resources Management in Colombia: A Historical Perspective. Ambiente & Sociedade, 27. (2024).spa
dcterms.bibliographicCitationHenao, C., Lis-Gutiérrez, J. P., Lis-Gutiérrez, M., & Ariza-Salazar, J. Determinants of efficient water use and conservation in the Colombian manufacturing industry using machine learning. Humanities and Social Sciences Communications, 11(1), 1-11. (2024).spa
dcterms.bibliographicCitationMirumachi, N., Duda, A., Gregulska, J., & Smetek, J. The human right to drinking water: Impact of large-scale agriculture and industry. Policy Department for External Relations, Directorate General for External Policies of the Union, European Parliament. (2021).spa
dcterms.bibliographicCitationCaro, M. A. T., Vargas, R. D. S., & Otero, C. Qualitative indicators for community water resilience in floodable areas: Agricultural pantry of La Mojana, Colombia. Economia agro-alimentare, (2023/1). (2023).spa
dcterms.bibliographicCitationINCA. Informe nacional de Calidad del Agua para Consumo Humano. Ministerio de Salud y Protección Social de Colombia. URL: https://www.minvivienda.gov.co/sites/default/files/documentos/informe-nacional-de-calidad-delagua- para-consumo-humano-inca-2021.pdf (2024).spa
dcterms.bibliographicCitationCarsucre. Estudio Técnico del Acuífero de Morroa: Grupo de Aguas CARSUCRE. Colombia. (2021).spa
dcterms.bibliographicCitationPérez, A. J., Hurtado-Patiño, J., Herrera, H. M., Carvajal, A. F., Pérez, M. L., Gonzalez-Rojas, E., & Pérez-García, J. Assessing sub-regional water scarcity using the groundwater footprint. Ecological indicators, 96, 32-39. (2019).spa
dcterms.bibliographicCitationAdeyeri, O. E., Folorunsho, A. H., Ayegbusi, K. I., Bobde, V., Adeliyi, T. E., Ndehedehe, C. E., & Akinsanola, A. A., Land surface dynamics and meteorological forcings modulate land surface temperature characteristics. Sustainable Cities and Society, 101, 105072. (2024).spa
dcterms.bibliographicCitationArrechea-Castillo, D. A., Solano-Correa, Y. T., Muñoz-Ordóñez, J. F., Pencue-Fierro, E. L., & Figueroa-Casas, A. Multiclass land use and land cover classification of andean sub-basins in Colombia with sentinel-2 and deep learning. Remote Sensing, 15(10), 2521. (2023).spa
dcterms.bibliographicCitationXie, Z., Phinn, S. R., Game, E. T., Pannell, D. J., Hobbs, R. J., Briggs, P. R., & McDonald-Madden, E. Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands-A first step towards identifying degraded lands for conservation. Remote Sensing of Environment, 232, 111317. (2019).spa
dcterms.bibliographicCitationYang, X., & Zhang, Z. A CNN-LSTM model based on a meta-learning algorithm to predict groundwater level in the middle and lower reaches of the Heihe River, China. Water, 14(15), 2377. (2022).spa
dcterms.bibliographicCitationAhmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A. & Sadegh, M. Groundwater level modeling with machine learning: a systematic review and meta-analysis. Water, 14(6), 949. (2022)spa
dcterms.bibliographicCitationJeong, J., Park, E., Chen, H., Kim, K. Y., Han, W. S., & Suk, H. Estimation of groundwater level based on the robust training of recurrent neural networks using corrupted data. Journal of Hydrology, 582, 124512. (2020).spa
dcterms.bibliographicCitationManrique, C. C., Villa, J. L., Month, A. A., & Velilla, G. P. Application of Artificial Intelligence Tools, Data Processing, and Analysis in the Forecasting of Level and Flow Variables in Wells with Little Data from the Morroa Aquifer. In Workshop on Engineering Applications (pp. 228-239). Cham: Springer Nature Switzerland. (2023).spa
dcterms.bibliographicCitationInstituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM)., “Estudio Nacional del Agua (ENA)”, < http://www.ideam.gov.co/web/agua/estudio-nacional-del-agua/ (29 March 2024).spa
dcterms.bibliographicCitationNavarro Mercado, J. L. Monitoreo de las obras piloto de recarga artificial en el acuífero Morroa, departamento de Sucre, Colombia. (2020).spa
dcterms.bibliographicCitationSolano-Correa, Y. T., Bovolo, F., Bruzzone, L., & Fernández-Prieto, D. Automatic derivation of cropland phenological parameters by adaptive non-parametric regression of Sentinel-2 NDVI time series. In IGARSS 2018- 2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 1946-1949). IEEE. (2018)spa
dcterms.bibliographicCitationLiang, J., Ren, C., Li, Y., Yue, W., Wei, Z., Song, X., & Lin, X. Using enhanced gap-filling and whittaker smoothing to reconstruct high spatiotemporal resolution NDVI time series based on Landsat 8, Sentinel-2, and MODIS imagery. ISPRS International Journal of Geo-Information, 12(6), 214. (2023).spa
dcterms.bibliographicCitationLi, X., Peng, Q., Zheng, Y., Lin, S., He, B., Qiu, Y., & Yuan, W. Incorporating environmental variables into spatiotemporal fusion model to reconstruct high-quality vegetation index data. IEEE Transactions on Geoscience and Remote Sensing. (2024).spa
dcterms.bibliographicCitationKarfs, R., Holloway, C., Pritchard, K., & Resing, J. Land condition photo standards for the Burdekin dry tropics rangelands: a guide for practitioners. Burdekin Solutions Ltd and Queensland Department of Primary Industries and Fisheries: Townsville. (2009).spa
dcterms.bibliographicCitationZhang, T., Su, J., Xu, Z., Luo, Y., & Li, J. Sentinel-2 satellite imagery for urban land cover classification by optimized random forest classifier. Applied Sciences, 11(2), 543. (2022).spa
dcterms.bibliographicCitationHoorman, J. J. Using cover crops to improve soil and water quality. Lima, Ohio: Agriculture and Natural Resources, The Ohio State University Extension. (2009).spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1117/12.3014190
dc.subject.keywordsStatic Levelspa
dc.subject.keywordsAquiferspa
dc.subject.keywordsPlanetspa
dc.subject.keywordsRemote Sensingspa
dc.subject.keywordsland coverspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_c94fspa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.