Mostrar el registro sencillo del ítem

dc.contributor.authorMeshkini, Khatereh
dc.contributor.authorSolano-Correa, Yady Tatiana
dc.contributor.authorBovolo, Francesca
dc.contributor.authorBruzzone, Lorenzo
dc.coverage.spatialBrazil y Sahel
dc.date.accessioned2024-09-12T13:51:58Z
dc.date.available2024-09-12T13:51:58Z
dc.date.issued2024-07-22
dc.date.submitted2024-09-11
dc.identifier.citationK. Meshkini, Y. T. Solano-Correa, F. Bovolo and L. Bruzzone, “Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping,” IEEE Trans. on Geosci. and Remote Sens., vol. 62, pp. 1-12. Jul. 2024. DOI: 10.1109/TGRS.2024.3431631.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12726
dc.description.abstractHigh-resolution (HR) satellite image time series (SITS) are a valuable data source for analyzing land cover change (LCC) due to their large amount of spatial, spectral, and temporal information. However, most existing LCC detection methods focus on binary change detection (CD) within a single year and fail to provide detailed information about the specific type of change. In this study, we propose a multiannual CD approach that identifies changes occurring between consecutive years and provides information about the type of LC transition. The proposed approach exploits multiannual and multispectral SITS to generate a hypertemporal feature space (FS). This FS is analyzed to create a set of CD maps that indicate the time, probability, and type of change. To measure the similarity between pixel time series, we use dynamic time warping (DTW) in the space of hypertemporal features. A hierarchical clustering technique is exploited to develop a set of class prototypes (CPs) that represent the characteristics of different LC classes. The CPs are then used to identify the most probable LC transition for each changed pixel. Two test areas were selected to evaluate the effectiveness of the proposed approach. The first one is located in Amazon and spans the years 2015 to 2019; and the second one is located in Sahel-Africa and covers the years 2015 and 2016, using multiannual Landsat 7 and 8 SITS. The results demonstrate that the proposed approach is effective in detecting multiannual changes and in identifying the LC transitions.spa
dc.format.extent12 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceIEEE Transactions on Geoscience and Remote Sensingspa
dc.titleMultiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warpingspa
dcterms.bibliographicCitationJ. Verbesselt, A. Zeileis and M. Herold, "Near real-time disturbance detection using satellite image time series", Remote Sens. Environ., vol. 123, pp. 98-108, Aug. 2012.spa
dcterms.bibliographicCitationM. Decuyper et al., "Continuous monitoring of forest change dynamics with satellite time series", Remote Sens. Environ., vol. 269, Feb. 2022.spa
dcterms.bibliographicCitationD. Lu, E. Moran and S. Hetrick, "Detection of impervious surface change with multitemporal Landsat images in an urban–rural frontier", ISPRS J. Photogramm. Remote Sens., vol. 66, no. 3, pp. 298-306, May 2011.spa
dcterms.bibliographicCitationS. Stramondo, C. Bignami, M. Chini, N. Pierdicca and A. Tertulliani, "Satellite radar and optical remote sensing for earthquake damage detection: Results from different case studies", Int. J. Remote Sens., vol. 27, no. 20, pp. 4433-4447, Oct. 2006.spa
dcterms.bibliographicCitationK. Meshkini, F. Bovolo and L. Bruzzone, "A 3D CNN approach for change detection in HR satellite image time series based on a pretrained 2D CNN", Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. 43, pp. 143-150, May 2022.spa
dcterms.bibliographicCitationA. Rodrigues, A. R. S. Marcal and M. Cunha, "Monitoring vegetation dynamics inferred by satellite data using the PhenoSat tool", IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2096-2104, Apr. 2013.spa
dcterms.bibliographicCitationY. T. Solano-Correa, F. Bovolo, L. Bruzzone and D. Fernández-Prieto, "A method for the analysis of small crop fields in Sentinel-2 dense time series", IEEE Trans. Geosci. Remote Sens., vol. 58, no. 3, pp. 2150-2164, Mar. 2020.spa
dcterms.bibliographicCitationC. Senf, D. Pflugmacher, M. A. Wulder and P. Hostert, "Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series", Remote Sens. Environ., vol. 170, pp. 166-177, Dec. 2015.spa
dcterms.bibliographicCitationA. Asokan and J. Anitha, "Change detection techniques for remote sensing applications: A survey", Earth Sci. Inform., vol. 12, no. 2, pp. 143-160, Jun. 2019.spa
dcterms.bibliographicCitationG. Jianya, S. Haigang, M. Guorui and Z. Qiming, "A review of multi-temporal remote sensing data change detection algorithms", Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. 37, no. B7, pp. 757-762, 2008.spa
dcterms.bibliographicCitationI. Pôças, M. Cunha, A. R. S. Marcal and L. S. Pereira, "An evaluation of changes in a mountainous rural landscape of Northeast Portugal using remotely sensed data", Landscape Urban Planning, vol. 101, no. 3, pp. 253-261, Jun. 2011.spa
dcterms.bibliographicCitationX. Zhang, P. Xiao, X. Feng and M. Yuan, "Separate segmentation of multi-temporal high-resolution remote sensing images for objectbased change detection in urban area", Remote Sens. Environ., vol. 201, pp. 243-255, Nov. 2017.spa
dcterms.bibliographicCitationG. Vivekananda, R. Swathi and A. Sujith, "Multi-temporal image analysis for LULC classification and change detection", Eur. J. Remote Sens., vol. 54, no. 2, pp. 189-199, Mar. 2021.spa
dcterms.bibliographicCitationB. Wang, J. Choi, S. Choi, S. Lee, P. Wu and Y. Gao, "Image fusionbased land cover change detection using multi-temporal high-resolution satellite images", Remote Sens., vol. 9, no. 8, pp. 804, Aug. 2017.spa
dcterms.bibliographicCitationS. Jamali, P. Jönsson, L. Eklundh, J. Ardö and J. Seaquist, "Detecting changes in vegetation trends using time series segmentation", Remote Sens. Environ., vol. 156, pp. 182-195, Jan. 2015.spa
dcterms.bibliographicCitationW. B. Cohen, Z. Yang and R. E. Kennedy, "Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms", Remote Sens. Environ., vol. 114, no. 12, pp. 2897-2910, 2010.spa
dcterms.bibliographicCitationR. De Jong, J. Verbesselt, M. E. Schaepman and S. De Bruin, "Trend changes in global greening and browning: Contribution of short-term trends to longer-term change", Global Change Biol., vol. 18, no. 2, pp. 642-655, 2012.spa
dcterms.bibliographicCitationE. B. Brooks, R. H. Wynne, V. A. Thomas, C. E. Blinn and J. W. Coulston, "On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data", IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3316-3332, Jun. 2014.spa
dcterms.bibliographicCitationJ. Verbesselt, R. Hyndman, G. Newnham and D. Culvenor, "Detecting trend and seasonal changes in satellite image time series", Remote Sens. Environ., vol. 114, no. 1, pp. 106-115, Jan. 2010.spa
dcterms.bibliographicCitationJ. Lambert, C. Drenou, J.-P. Denux, G. Balent and V. Cheret, "Monitoring forest decline through remote sensing time series analysis", GIScience Remote Sens., vol. 50, no. 4, pp. 437-457, Aug. 2013.spa
dcterms.bibliographicCitationO. A. C. Júnior et al., "A new approach to change vector analysis using distance and similarity measures", Remote Sens., vol. 3, no. 11, pp. 2473-2493, Nov. 2011spa
dcterms.bibliographicCitationF. Bovolo and L. Bruzzone, "A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain", IEEE Trans. Geosci. Remote Sens., vol. 45, no. 1, pp. 218-236, Jan. 2007.spa
dcterms.bibliographicCitationK. Meshkini, F. Bovolo and L. Bruzzone, "A multi-feature hypertemporal change vector analysis method for change detection in multi-annual time series of HR satellite images", Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), pp. 8315-8318, Jul. 2023.spa
dcterms.bibliographicCitationD. J. Berndt and J. Clifford, "Using dynamic time warping to find patterns in time series", Proc. KDD Workshop, pp. 356-370, 1994.spa
dcterms.bibliographicCitationT. Rakthanmanon et al., "Searching and mining trillions of time series subsequences under dynamic time warping", Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 262-270, Aug. 2012.spa
dcterms.bibliographicCitationF. Petitjean, J. Inglada and P. Gançarski, "Satellite image time series analysis under time warping", IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3081-3095, Aug. 2012.spa
dcterms.bibliographicCitationF. Petitjean and J. Weber, "Efficient satellite image time series analysis under time warping", IEEE Geosci. Remote Sens. Lett., vol. 11, no. 6, pp. 1143-1147, Jun. 2014.spa
dcterms.bibliographicCitationM. Baumann, M. Ozdogan, A. D. Richardson and V. C. Radeloff, "Phenology from Landsat when data is scarce: Using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves", Int. J. Appl. Earth Observ. Geoinf., vol. 54, pp. 72-83, Feb. 2017.spa
dcterms.bibliographicCitationM. Belgiu and O. Csillik, "Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis", Remote Sens. Environ., vol. 204, pp. 509-523, Jan. 2018.spa
dcterms.bibliographicCitationGoogle Earth Engine, May 2023, [online] Available: https://developers.google.com/earth-engine/datasets/catalog/landsat.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/TGRS.2024.3431631
dc.subject.keywordsDynamic time warping (DTW)spa
dc.subject.keywordsHypertemporal featurespa
dc.subject.keywordsLand cover change (LCC)spa
dc.subject.keywordsLand cover (LC) transitionspa
dc.subject.keywordsMultiannualspa
dc.subject.keywordsRemote sensing (RS)spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.