Mostrar el registro sencillo del ítem

dc.contributor.authorSierra Porta, David
dc.contributor.authorPetro Ramos, Jesús
dc.contributor.authorRuiz Morales, David
dc.contributor.authorHerrera Acevedo, Daniel
dc.contributor.authorGarcía Teheran, Andrés
dc.contributor.authorTarazona Alvarado, José
dc.coverage.spatialColombia
dc.date.accessioned2024-09-06T14:43:25Z
dc.date.available2024-09-06T14:43:25Z
dc.date.issued2024-08-14
dc.date.submitted2024-09-05
dc.identifier.citationD. Sierra-Porta, J.D. Petro-Ramos, D.J. Ruiz-Morales, D.D. Herrera-Acevedo, A.F. García-Teheran, M. Tarazona Alvarado, Machine learning models for predicting geomagnetic storms across five solar cycles using Dst index and heliospheric variables, Advances in Space Research, Volume 74, Issue 8, 2024, Pages 3483-3495, ISSN 0273-1177, https://doi.org/10.1016/j.asr.2024.08.031. (https://www.sciencedirect.com/science/article/pii/S0273117724008500)spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12719
dc.description.abstractThis study aims to improve the understanding of geomagnetic storms by utilizing machine learning models and analyzing several heliophysical variables, such as the interplanetary magnetic field, proton density, solar wind speed, and proton temperature. Rather than relying on traditional correlation-based methods, we employ advanced machine learning techniques to examine the complex relationships between these factors and geomagnetic storms. Our analysis covers a large dataset spanning six solar cycles, including the current 25th cycle, to provide comprehensive insights into the dynamics of these storms. Our study highlights the significance of the interplanetary magnetic field as a key predictor of geomagnetic storms, challenging previous beliefs that primarily focused on sunspot activity. By using high-resolution data, we uncover new patterns and provide a more detailed analysis of the factors influencing geomagnetic storms. We emphasize the importance of considering a range of heliophysical variables, such as proton temperature and flow pressure, which offer new insights into the complex dynamics driving these storm events. The application of machine learning models, particularly Random Forest and Gradient Boosting, demonstrated superior predictive accuracy compared to traditional methods. Our results reveal that the Dst-index MIN, scalar B, and alpha/proton ratio are among the most influential factors, accounting for a significant portion of the prediction model’s accuracy. These findings underscore the utility of machine learning in identifying critical drivers of geomagnetic activity and enhancing forecast precision. Additionally, our research underscores the need for comprehensive models that can accurately predict geomagnetic storms by integrating various data sources. This machine learning approach not only improves predictive accuracy but also enhances our understanding of the underlying mechanisms of space weather. The insights gained from this study have important implications for both scientific research and practical applications, such as improving early warning systems for geomagnetic storms and mitigating their potential impacts on Earth.spa
dc.format.extent13 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceSciencedirect - Advances in Space Research, Vol. 74 N° 8 (2024)spa
dc.titleMachine learning models for predicting geomagnetic storms across five solar cycles using Dst index and heliospheric variablesspa
dcterms.bibliographicCitationAbe, O., Fakomiti, M., Igboama, W. et al. (2023). Statistical analysis of the 793 occurrence rate of geomagnetic storms during solar cycles 20–24. Advances 794 in Space Research, 71(5), 2240–2251. doi:https://doi.org/10.1016/ 795 j.asr.2022.10.033.spa
dcterms.bibliographicCitationAbraha, G., Yemane, T., & Kassa, T. (2020). Geomagnetic storms and their 797 impacts on ethiopian power grid. Advances in Astronomy and Space Physics, 798 10, 55–64.spa
dcterms.bibliographicCitationAdnan, M., Alarood, A. A. S., Uddin, M. I. et al. (2022). Utilizing grid 800 search cross-validation with adaptive boosting for augmenting performance 801 of machine learning models. PeerJ Computer Science, 8, e803. doi:https: 802 //doi.org/10.7717/peerj-cs.803.spa
dcterms.bibliographicCitationAlibrahim, H., & Ludwig, S. A. (2021). Hyperparameter optimization: Com- 804 paring genetic algorithm against grid search and bayesian optimization. In 805 2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 1551–1559). 806 IEEE. doi:https://doi.org/10.1109/CEC45853.2021.9504761.spa
dcterms.bibliographicCitationBentéjac, C., Csörgo, A., & Martínez-Muñoz, G. (2021). A comparative analy- ˝ 808 sis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937– 809 1967. doi:https://doi.org/10.1007/s10462-020-09896-5spa
dcterms.bibliographicCitationBiau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197–227. 811 doi:https://doi.org/10.1007/s11749-016-0481-7spa
dcterms.bibliographicCitationBorovsky, J. E., & Shprits, Y. Y. (2017). Is the dst index sufficient to define 813 all geospace storms? Journal of Geophysical Research: Space Physics, 814 122(11), 11–543. doi:https://doi.org/10.1002/2017JA024679spa
dcterms.bibliographicCitationBoroyev, R. N., Vasiliev, M. S., & Baishev, D. G. (2020). The relation- 816 ship between geomagnetic indices and the interplanetary medium param- 817 eters in magnetic storm main phases during cir and icme events. Jour- 818 nal of Atmospheric and Solar-Terrestrial Physics, 204, 105290. doi:https: 819 //doi.org/10.1016/j.jastp.2020.105290.spa
dcterms.bibliographicCitationBreiman, L. (2001). Random forests. Machine learning, 45, 5–32. doi:https: 821 //doi.org/10.1023/A:1010933404324spa
dcterms.bibliographicCitationChiu, M., Von-Mehlem, U., Willey, C. et al. (1998). Ace spacecraft. 823 Space science reviews, 86, 257–284. doi:https://doi.org/10.1023/A: 824 1005002013459.spa
dcterms.bibliographicCitationCliver, E. W., Boriakoff, V., & Bounar, K. H. (1996). The 22-year cy- 826 cle of geomagnetic and solar wind activity. Journal of Geophysical Re- 827 search: Space Physics, 101(A12), 27091–27109. doi:https://doi.org/ 828 10.1029/96JA02037spa
dcterms.bibliographicCitationDrucker, H. (1997). Improving regressors using boosting tech- 830 niques. In Icml (pp. 107–115). Citeseer volume 97. URL: 831 https://citeseerx.ist.psu.edu/document?repid=rep1&type= 832 pdf&doi=6d8226a52ebc70c8d97ccae10a74e1b0a3908ec1spa
dcterms.bibliographicCitationEcher, E., Gonzalez, W. D., Tsurutani, B. T. et al. (2008). Interplanetary condi- 834 tions causing intense geomagnetic storms (dst≤- 100 nt) during solar cy- 835 cle 23 (1996–2006). Journal of Geophysical Research: Space Physics, 836 113(A5). doi:https://doi.org/10.1029/2007JA012744.spa
dcterms.bibliographicCitationEcher, E., Tsurutani, B., & Gonzalez, W. (2013). Interplanetary origins of 838 moderate (- 100 nt< dst≤- 50 nt) geomagnetic storms during solar cycle 23 839 (1996–2008). Journal of Geophysical Research: Space Physics, 118(1), 840 385–392. doi:https://doi.org/10.1029/2012JA018086spa
dcterms.bibliographicCitationEid, A., Nawawy, M., & Robaa, S. (2022). Geomagnetic storm impacts on com843 munication, navigation, surveillance, and air traffic management (cns/atm). 844 Current Science International, 11(3), 282–290.spa
dcterms.bibliographicCitationFairfield, D., Lepping, R., Hones Jr, E. et al. (1981). Simultaneous measure846 ments of magnetotail dynamics by imp spacecraft. Journal of Geophysi847 cal Research: Space Physics, 86(A3), 1396–1414. doi:https://doi.org/ 848 10.1029/JA086iA03p01396.spa
dcterms.bibliographicCitationFrank, L. A. (1994). Comprehensive Plasma Instrumentation (CPU) for the 850 Geotail spacecraft. Technical Report. URL: https://ntrs.nasa.gov/ 851 api/citations/19960041496/downloads/19960041496.pdf.spa
dcterms.bibliographicCitationFriedman, J. H. (2002). Stochastic gradient boosting. Computational statis853 tics & data analysis, 38(4), 367–378. doi:https://doi.org/10.1016/ 854 S0167-9473(01)00065-2spa
dcterms.bibliographicCitationGarrard, T., Davis, A., Hammond, J. et al. (1998). The ace science center. 856 The Advanced Composition Explorer Mission, (pp. 649–663). doi:https: 857 //doi.org/10.1007/978-94-011-4762-0_23.spa
dcterms.bibliographicCitationGeurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized 859 trees. Machine learning, 63, 3–42. doi:https://doi.org/10.1007/ 860 s10994-006-6226-1.spa
dcterms.bibliographicCitationGonzalez, W., Joselyn, J.-A., Kamide, Y. et al. (1994). What is a geomagnetic 862 storm? Journal of Geophysical Research: Space Physics, 99(A4), 5771– 863 5792. doi:https://doi.org/10.1029/93JA02867.spa
dcterms.bibliographicCitationGonzalez, W. D., Echer, E., Tsurutani, B. T. et al. (2011). Interplan865 etary origin of intense, superintense and extreme geomagnetic storms. 866 Space science reviews, 158, 69–89. doi:https://doi.org/10.1007/ 867 s11214-010-9715-2spa
dcterms.bibliographicCitationGonzalez, W. D., Tsurutani, B. T., & Clúa de Gonzalez, A. L. (1999). Inter869 planetary origin of geomagnetic storms. Space Science Reviews, 88(3-4), 870 529–562. doi:https://doi.org/10.1023/A:1005160129098spa
dcterms.bibliographicCitationHady, A. (2009). Descriptive study of solar activity sudden increase 872 and halloween storms of 2003. Journal of atmospheric and solar873 terrestrial physics, 71(17-18), 1711–1716. doi:https://doi.org/10. 874 1016/j.jastp.2008.11.019.spa
dcterms.bibliographicCitationHajra, R., Marques de Souza Franco, A., Echer, E. et al. (2021). Long876 term variations of the geomagnetic activity: A comparison between the 877 strong and weak solar activity cycles and implications for the space climate. 878 Journal of Geophysical Research: Space Physics, 126(4), e2020JA028695. 879 doi:https://doi.org/10.1029/2020JA028695spa
dcterms.bibliographicCitation0 Hall, C. M., & Johnsen, M. G. (2020). Possible influence of variations in the 881 geomagnetic field on migration paths of snow buntings. International Jour882 nal of Astrobiology, 19(2), 195–201. doi:https://doi.org/10.1017/ 883 S1473550419000193.spa
dcterms.bibliographicCitationHastie, T., Tibshirani, R., Friedman, J. et al. (2009). Random forests. The 885 elements of statistical learning: Data mining, inference, and prediction, (pp. 886 587–604). doi:https://doi.org/10.1007/978-0-387-84858-7_15.spa
dcterms.bibliographicCitationInyurt, S. (2020). Modeling and comparison of two geomagnetic storms. Ad888 vances in Space Research, 65(3), 966–977. doi:https://doi.org/10. 889 1016/j.asr.2019.11.004spa
dcterms.bibliographicCitationJi, E.-Y., Moon, Y.-J., Gopalswamy, N. et al. (2012). Comparison of dst 891 forecast models for intense geomagnetic storms. Journal of Geophysi892 cal Research: Space Physics, 117(A3). doi:https://doi.org/10.1029/ 893 2011JA016872spa
dcterms.bibliographicCitation4 Kane, R. P. (2005). How good is the relationship of solar and interplane895 tary plasma parameters with geomagnetic storms? Journal of Geophysi896 cal Research: Space Physics, 110(A2). doi:https://doi.org/10.1029/ 897 2004JA010799.spa
dcterms.bibliographicCitationKiznys, D., Vencloviene, J., & Milvidaite, I. (2020). The associations of ge- ˙ 899 omagnetic storms, fast solar wind, and stream interaction regions with car900 diovascular characteristic in patients with acute coronary syndrome. Life 901 Sciences in Space Research, 25, 1–8. doi:https://doi.org/10.1016/j. 902 lssr.2020.01.002spa
dcterms.bibliographicCitationLakhina, G. S., & Tsurutani, B. T. (2016). Geomagnetic storms: historical 904 perspective to modern view. Geoscience Letters, 3, 1–11. doi:https:// 905 doi.org/10.1186/s40562-016-0037-4spa
dcterms.bibliographicCitationLe, G.-M., Cai, Z.-Y., Wang, H.-N. et al. (2013). Solar cycle distribution of 907 major geomagnetic storms. Research in Astronomy and Astrophysics, 13(6), 908 739. doi:https://doi.org/10.1088/1674-4527/13/6/013.spa
dcterms.bibliographicCitationLoewe, C., & Prölss, G. (1997). Classification and mean behavior of magnetic 910 storms. Journal of Geophysical Research: Space Physics, 102(A7), 14209– 911 14213. doi:https://doi.org/10.1029/96JA04020spa
dcterms.bibliographicCitationLopez, R. E., Baker, D. N., & Allen, J. (2004). Sun unleashes halloween storm. Eos, Transactions American Geophysical Union, 85(11), 105–108. 913 doi:https://doi.org/10.1029/2004EO110002.spa
dcterms.bibliographicCitationLove, J. J., Rigler, E. J., Hartinger, M. D. et al. (2023). The march 1940 915 superstorm: Geoelectromagnetic hazards and impacts on american com- 916 munication and power systems. Space Weather, 21(6), e2022SW003379. 917 doi:https://doi.org/10.1029/2022SW003379spa
dcterms.bibliographicCitationMandea, M., & Chambodut, A. (2020). Geomagnetic field processes and their 919 implications for space weather. Surveys in Geophysics, 41, 1611–1627. 920 doi:https://doi.org/10.1007/s10712-020-09598-1spa
dcterms.bibliographicCitationMiteva, R., Nedal, M., Samwel, S. W. et al. (2023). Parameter study of 922 geomagnetic storms and associated phenomena: Cme speed de-projection 923 vs. in situ data. Universe, 9(4), 179. doi:https://doi.org/10.3390/ 924 universe9040179spa
dcterms.bibliographicCitationMoore, J. H., Ribeiro, P. H., Matsumoto, N. et al. (2023). Genetic pro- 926 gramming as an innovation engine for automated machine learning: The 927 tree-based pipeline optimization tool (tpot). In Handbook of Evolutionary 928 Machine Learning (pp. 439–455). Springer. doi:https://doi.org/10. 929 1007/978-981-99-3814-8_14spa
dcterms.bibliographicCitationNatekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Fron- 931 tiers in neurorobotics, 7, 21. doi:https://doi.org/10.3389/fnbot. 932 2013.00021.spa
dcterms.bibliographicCitationNitta, N. V., Mulligan, T., Kilpua, E. K. et al. (2021). Understanding the ori- 934 gins of problem geomagnetic storms associated with “stealth” coronal mass 935 ejections. Space Science Reviews, 217(8), 82. doi:https://doi.org/10. 936 1007/s11214-021-00857-0spa
dcterms.bibliographicCitationNti, I. K., Nyarko-Boateng, O., Aning, J. et al. (2021). Performance of machine 938 learning algorithms with different k values in k-fold cross-validation. Inter- 939 national Journal of Information Technology and Computer Science, 13(6), 940 61–71. doi:https://doi.org/10.5815/ijitcs.2021.06.05spa
dcterms.bibliographicCitationOgilvie, K., & Desch, M. (1997). The wind spacecraft and its early scientific 942 results. Advances in Space Research, 20(4-5), 559–568. doi:https://doi. 943 org/10.1016/S0273-1177(97)00439-0spa
dcterms.bibliographicCitationOlson, R. S., & Moore, J. H. (2016). Tpot: A tree-based pipeline optimiza- 945 tion tool for automating machine learning. In Workshop on automatic ma- 946 chine learning (pp. 66–74). PMLR. doi:https://doi.org/10.1007/ 947 978-3-030-05318-5_8.spa
dcterms.bibliographicCitationPaularena, K., & King, J. (1999). Nasa’s imp 8 spacecraft. Interball in the ISTP 949 Program: Studies of the solar wind-magnetosphere-ionosphere interaction, 950 (pp. 145–154). doi:https://doi.org/10.1007/978-94-011-4487-2_ 951 11.spa
dcterms.bibliographicCitationPedregosa, F., Varoquaux, G., Gramfort, A. et al. (2011). Scikit- 953 learn: Machine learning in python. the Journal of machine Learn- 954 ing research, 12, 2825–2830. URL: https://www.jmlr.org/papers/ 955 volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/.spa
dcterms.bibliographicCitationRathore, B., Kaushik, S., Bhadoria, R. et al. (2012). Sunspots and geomag- 957 netic storms during solar cycle-23. Indian Journal of Physics, 86, 563–567. 958 doi:https://doi.org/10.1007/s12648-012-0106-2.spa
dcterms.bibliographicCitationReyes, P. I., Pinto, V. A., & Moya, P. S. (2021). Geomagnetic storm occur- 960 rence and their relation with solar cycle phases. Space Weather, 19(9), 961 e2021SW002766. doi:https://doi.org/10.1029/2021SW002766spa
dcterms.bibliographicCitationRichardson, I., Cliver, E., & Cane, H. (2001). Sources of geomagnetic storms 963 for solar minimum and maximum conditions during 1972–2000. Geo- 964 physical Research Letters, 28(13), 2569–2572. doi:https://doi.org/ 965 10.1029/2001GL013052.spa
dcterms.bibliographicCitationSamwel, S., & Miteva, R. (2023). Correlations between space weather pa- 967 rameters during intense geomagnetic storms: Analytical study. Advances in 968 Space Research, 72(8), 3440–3453. doi:https://doi.org/10.1016/j. 969 asr.2023.07.053spa
dcterms.bibliographicCitationSarimov, R. M., Serov, D. A., & Gudkov, S. V. (2023). Biological effects of 971 magnetic storms and elf magnetic fields. Biology, 12(12), 1506. doi:https: 972 //doi.org/10.3390/biology12121506spa
dcterms.bibliographicCitationSchaffer, C. (1993). Selecting a classification method by cross- 974 validation. Machine learning, 13, 135–143. doi:https://doi.org/10. 975 1007/BF00993106spa
dcterms.bibliographicCitationSchapire, R. E. (2003). The boosting approach to machine learning: 977 An overview. Nonlinear estimation and classification, (pp. 149–171). 978 doi:https://doi.org/10.1007/978-0-387-21579-2_9spa
dcterms.bibliographicCitationSchmidt, R., Arends, H., Pedersen, A. et al. (1995). Results from active 980 spacecraft potential control on the geotail spacecraft. Journal of Geo- 981 physical Research: Space Physics, 100(A9), 17253–17259. doi:https: 982 //doi.org/10.1029/95JA01552.spa
dcterms.bibliographicCitationSingh Chauhan, D., Tiwari, D., Tripathi, A. et al. (2010). Association of large 985 geomagnetic storms with halo cmes and cirs observed during 1997–2007. 986 Indian Journal of Physics , 84, 881–886. doi:https://doi.org/10.1007/ 987 s12648-010-0052-9 .spa
dcterms.bibliographicCitationSiscoe, G., Crooker, N., & Clauer, C. (2006). Dst of the carrington storm of 989 1859. Advances in Space Research , 38(2), 173–179. doi:https://doi. 990 org/10.1016/j.asr.2005.02.102spa
dcterms.bibliographicCitationSrivastava, N., & Venkatakrishnan, P. (2002). Relationship between cme speed 992 and geomagnetic storm intensity. Geophysical research letters , 29(9), 1–1. 993 doi:https://doi.org/10.1029/2001GL013597spa
dcterms.bibliographicCitationSugiura, M. (1960). The average morphology of geomagnetic stroms with sud995 den commencements. Abh. Akad. Wiss. Gottingen, Math.-phys., 53spa
dcterms.bibliographicCitationTaran, S., Alipour, N., Rokni, K. et al. (2023). E ffect of geomagnetic storms 997 on a power network at mid latitudes. Advances in Space Research , 71(12), 998 5453–5465. doi:https://doi.org/10.1016/j.asr.2023.02.027spa
dcterms.bibliographicCitationTsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. et al. (1995). Interplane1000 tary origin of geomagnetic activity in the declining phase of the solar cycle. 1001 Journal of Geophysical Research: Space Physics , 100(A11), 21717–21733. 1002 doi:https://doi.org/10.1029/95JA01476spa
dcterms.bibliographicCitationTsurutani, B. T., Gonzalez, W. D., Lakhina, G. et al. (2003). The extreme mag1004 netic storm of 1–2 september 1859. Journal of Geophysical Research: Space 1005 Physics , 108(A7). doi:https://doi.org/10.1029/2002JA009504spa
dcterms.bibliographicCitationTsurutani, B. T., Gonzalez, W. D., Tang, F. et al. (1992). Great magnetic storms. 1007 Geophysical Research Letters , 19(1), 73–76. doi:https://doi.org/10. 1008 1029/91GL02783 .spa
dcterms.bibliographicCitationVerbanac, G., Vršnak, B., Veronig, A. et al. (2011). Equatorial coronal 1010 holes, solar wind high-speed streams, and their geoe ffectiveness. Astronomy 1011 & astrophysics , 526, A20. doi:https://doi.org/10.1051/0004-6361/ 1012 201014617 .spa
dcterms.bibliographicCitationWilson III, L. B., Brosius, A. L., Gopalswamy, N. et al. (2021). A quar1014 ter century of wind spacecraft discoveries. Reviews of Geophysics, 59(2). 1015 doi:https://doi.org/10.1029/2020RG000714 .spa
dcterms.bibliographicCitation6 Yacouba, S., Somaïla, K., & Louis, Z. J. (2022). Factors of geomagnetic 1017 storms during the solar cycles 23 and 24: A comparative statistical study. 1018 Scientific Research and Essays , 17(3), 46–56. doi:https://doi.org/10. 1019 5897/SRE2022.6751spa
dcterms.bibliographicCitationYing, C., Qi-Guang, M., Jia-Chen, L. et al. (2013). Advance and prospects of 1021 adaboost algorithm. Acta Automatica Sinica , 39(6), 745–758. doi:https: 1022 //doi.org/10.1016/S1874-1029(13)60052-X .spa
dcterms.bibliographicCitationZhang, S., He, L., & Wu, L. (2020). Statistical study of loss of gps sig1024 nals caused by severe and great geomagnetic storms. Journal of Geo1025 physical Research: Space Physics, 125(9), e2019JA027749. doi:https: 1026 //doi.org/10.1029/2019JA027749 .spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1016/j.asr.2024.08.031
dc.subject.keywordsSpace weatherspa
dc.subject.keywordsMachine learningspa
dc.subject.keywordsStatistical modelingspa
dc.subject.keywordsGeomagnetic stormsspa
dc.subject.keywordsData sciencespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.