Mostrar el registro sencillo del ítem
Calibration method based on virtual phase-to-coordinate mapping with linear correction function for structured light system
dc.contributor.author | Vargas, Raúl | |
dc.contributor.author | Romero, Lenny A. | |
dc.contributor.author | Zhang, Song | |
dc.contributor.author | Marrugo Hernández, Andrés G. | |
dc.date.accessioned | 2024-09-03T18:51:56Z | |
dc.date.available | 2024-09-03T18:51:56Z | |
dc.date.issued | 2024-08-16 | |
dc.date.submitted | 2024-09-03 | |
dc.identifier.citation | Vargas, R., Romero, L. A., Zhang, S., & Marrugo, A. G. (2024). Calibration method based on virtual phase-to-coordinate mapping with linear correction function for structured light system. Optics and Lasers in Engineering, 183, 108496. https://doi.org/10.1016/j.optlaseng.2024.108496 | spa |
dc.identifier.issn | 0143-8166 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12715 | |
dc.description.abstract | Structured light systems are crucial in fields requiring precise measurements, such as industrial manufacturing, due to their capability for real-time reconstructions. Existing calibration models, primarily based on stereo vision (SV) and pixel-wise approaches, face limitations in accuracy, complexity, and flexibility. These challenges stem from the inability to fully compensate for lens distortions and the errors introduced by physical calibration targets. Our work introduces a novel calibration approach using a virtual phase-to-coordinate mapping with a linear correction function, aiming to enhance accuracy and reduce complexity. This method involves traditional stereo calibration, phase processing, correction with ideal planes, and fitting a pixel-wise linear correction function. By employing virtual samples for phase-coordinate pairs and computing a pixel-wise correction, our methodology overcomes physical and numerical limitations associated with existing models. The results demonstrate superior measurement precision, robustness, and consistency, surpassing conventional stereo and polynomial regression models, both within and beyond the calibrated volume. This approach offers a significant advancement in structured light system calibration, providing a practical solution to existing challenges | spa |
dc.description.sponsorship | UTB | spa |
dc.format.extent | 9 | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Optics and Lasers in Engineering - Vol. 183 (2024) | spa |
dc.title | Calibration method based on virtual phase-to-coordinate mapping with linear correction function for structured light system | spa |
dcterms.bibliographicCitation | Qian J, Feng S, Xu M, Tao T, Shang Y, Chen Q, et al. High-resolution real-time 360º 3d surface defect inspection with fringe projection profilometry. Opt Lasers Eng 2021;137:106382 | spa |
dcterms.bibliographicCitation | Li B. High-speed 3d optical sensing for manufacturing research and industrial sensing applications. Trans Energy Syst Eng Appl 2022;3(2):1–12. | spa |
dcterms.bibliographicCitation | Bacqueville D, Maret A, Noizet M, Duprat L, Coutanceau C, Georgescu V, et al. Efficacy of a dermocosmetic serum combining bakuchiol and vanilla tahitensis extract to prevent skin photoaging in vitro and to improve clinical outcomes for naturally aged skin. Clin Cosmet Invest Dermatol 2020:359–70. | spa |
dcterms.bibliographicCitation | Pineda J, Vargas R, Romero LA, Marrugo J, Meneses J, Marrugo AG. Robust automated reading of the skin prick test via 3d imaging and parametric surface fitting. PLoS ONE 2019;14(10):e0223623. | spa |
dcterms.bibliographicCitation | Bell T, Zhang S. Holo reality: real-time low-bandwidth 3d range video communications on consumer mobile devices with application to augmented reality. J Electron Imaging 2019;2019(16):7. | spa |
dcterms.bibliographicCitation | Liao Y-H, Hyun J-S, Feller M, Bell T, Bortins I, Wolfe J, et al. Portable high-resolution automated 3d imaging for footwear and tire impression capture. J Forensic Sci 2021;66(1):112–28 | spa |
dcterms.bibliographicCitation | Marrugo AG, Gao F, Zhang S. State-of-the-art active optical techniques for threedimensional surface metrology: a review. JOSA A 2020;37(9):B60–77. | spa |
dcterms.bibliographicCitation | Zhang S. High-speed 3D imaging with digital fringe projection techniques. CRC Press; 2018. | spa |
dcterms.bibliographicCitation | Zhang S. Recent progresses on real-time 3d shape measurement using digital fringe projection techniques. Opt Lasers Eng 2010;48(2):149–58 | spa |
dcterms.bibliographicCitation | Zhang S, Huang P. Novel method for structured light system calibration. Opt Eng 2006;45. https://doi.org/10.1117/1.2336196. | spa |
dcterms.bibliographicCitation | Bu L, Wang R, Wang X, Hou Z, Zhou Y, Wang Y, et al. Calibration method for fringe projection profilometry based on rational function lens distortion model. Measurement 2023:112996. | spa |
dcterms.bibliographicCitation | Liu Y, Zhang B, Yuan X, Lin J, Jiang K. An improved projector calibration method by phase mapping based on fringe projection profilometry. Sensors 2023;23(3):1142. | spa |
dcterms.bibliographicCitation | Vargas R, Marrugo AG, Zhang S, Romero LA. Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting. Appl Opt 2020;59(13):D163–9 | spa |
dcterms.bibliographicCitation | Vargas R, Marrugo AG, Pineda J, Meneses J, Romero LA. Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study. Opt Pura Appl 2018;51(3):1–10. https:// doi.org/10.7149/OPA.51.3.50305 | spa |
dcterms.bibliographicCitation | Feng S, Zuo C, Zhang L, Tao T, Hu Y, Yin W, et al. Calibration of fringe projection profilometry: a comparative review. Opt Lasers Eng 2021;143:106622 | spa |
dcterms.bibliographicCitation | Juarez-Salazar R, Diaz-Ramirez VH. Flexible camera-projector calibration using superposed color checkerboards. Opt Lasers Eng 2019;120:59–65 | spa |
dcterms.bibliographicCitation | Xing S, Guo H. Iterative calibration method for measurement system having lens distortions in fringe projection profilometry. Opt Express 2020;28(2):1177–96. | spa |
dcterms.bibliographicCitation | Yu J, Gao N, Meng Z, Zhang Z. A three-dimensional measurement system calibration method based on red/blue orthogonal fringe projection. Opt Lasers Eng 2021;139:106506. | spa |
dcterms.bibliographicCitation | Yu J, Gao N, Meng Z, Zhang Z. High-accuracy projector calibration method for fringe projection profilometry considering perspective transformation. Opt Express 2021;29(10):15053–66. | spa |
dcterms.bibliographicCitation | Zhang S. Flexible and high-accuracy method for uni-directional structured light system calibration. Opt Lasers Eng 2021;143:106637. | spa |
dcterms.bibliographicCitation | Zhang S. Flexible and high-accuracy method for uni-directional structured light system calibration. Opt Lasers Eng 2021;143:106637. | spa |
dcterms.bibliographicCitation | Marrugo AG, Vargas R, Romero LA, Zhang S. Method for large-scale structured-light system calibration. Opt Express 2021;29(11):17316–29 | spa |
dcterms.bibliographicCitation | Zhang S. Absolute phase retrieval methods for digital fringe projection profilometry: a review. Opt Lasers Eng 2018;107:28–37 | spa |
dcterms.bibliographicCitation | Zhang S. Pixel-wise structured light calibration method with a color calibration target. Opt Express 2022;30(20):35817–27. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1016/j.optlaseng.2024.108496 | |
dc.subject.keywords | Calibration | spa |
dc.subject.keywords | Structured light | spa |
dc.subject.keywords | Fringe projection3D imaging | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ingeniería | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.