Mostrar el registro sencillo del ítem

dc.contributor.authorVargas, Raúl
dc.contributor.authorRomero, Lenny A.
dc.contributor.authorZhang, Song
dc.contributor.authorMarrugo Hernández, Andrés G.
dc.date.accessioned2024-09-03T18:51:56Z
dc.date.available2024-09-03T18:51:56Z
dc.date.issued2024-08-16
dc.date.submitted2024-09-03
dc.identifier.citationVargas, R., Romero, L. A., Zhang, S., & Marrugo, A. G. (2024). Calibration method based on virtual phase-to-coordinate mapping with linear correction function for structured light system. Optics and Lasers in Engineering, 183, 108496. https://doi.org/10.1016/j.optlaseng.2024.108496spa
dc.identifier.issn0143-8166
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12715
dc.description.abstractStructured light systems are crucial in fields requiring precise measurements, such as industrial manufacturing, due to their capability for real-time reconstructions. Existing calibration models, primarily based on stereo vision (SV) and pixel-wise approaches, face limitations in accuracy, complexity, and flexibility. These challenges stem from the inability to fully compensate for lens distortions and the errors introduced by physical calibration targets. Our work introduces a novel calibration approach using a virtual phase-to-coordinate mapping with a linear correction function, aiming to enhance accuracy and reduce complexity. This method involves traditional stereo calibration, phase processing, correction with ideal planes, and fitting a pixel-wise linear correction function. By employing virtual samples for phase-coordinate pairs and computing a pixel-wise correction, our methodology overcomes physical and numerical limitations associated with existing models. The results demonstrate superior measurement precision, robustness, and consistency, surpassing conventional stereo and polynomial regression models, both within and beyond the calibrated volume. This approach offers a significant advancement in structured light system calibration, providing a practical solution to existing challengesspa
dc.description.sponsorshipUTBspa
dc.format.extent9
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOptics and Lasers in Engineering - Vol. 183 (2024)spa
dc.titleCalibration method based on virtual phase-to-coordinate mapping with linear correction function for structured light systemspa
dcterms.bibliographicCitationQian J, Feng S, Xu M, Tao T, Shang Y, Chen Q, et al. High-resolution real-time 360º 3d surface defect inspection with fringe projection profilometry. Opt Lasers Eng 2021;137:106382spa
dcterms.bibliographicCitationLi B. High-speed 3d optical sensing for manufacturing research and industrial sensing applications. Trans Energy Syst Eng Appl 2022;3(2):1–12.spa
dcterms.bibliographicCitationBacqueville D, Maret A, Noizet M, Duprat L, Coutanceau C, Georgescu V, et al. Efficacy of a dermocosmetic serum combining bakuchiol and vanilla tahitensis extract to prevent skin photoaging in vitro and to improve clinical outcomes for naturally aged skin. Clin Cosmet Invest Dermatol 2020:359–70.spa
dcterms.bibliographicCitationPineda J, Vargas R, Romero LA, Marrugo J, Meneses J, Marrugo AG. Robust automated reading of the skin prick test via 3d imaging and parametric surface fitting. PLoS ONE 2019;14(10):e0223623.spa
dcterms.bibliographicCitationBell T, Zhang S. Holo reality: real-time low-bandwidth 3d range video communications on consumer mobile devices with application to augmented reality. J Electron Imaging 2019;2019(16):7.spa
dcterms.bibliographicCitationLiao Y-H, Hyun J-S, Feller M, Bell T, Bortins I, Wolfe J, et al. Portable high-resolution automated 3d imaging for footwear and tire impression capture. J Forensic Sci 2021;66(1):112–28spa
dcterms.bibliographicCitationMarrugo AG, Gao F, Zhang S. State-of-the-art active optical techniques for threedimensional surface metrology: a review. JOSA A 2020;37(9):B60–77.spa
dcterms.bibliographicCitationZhang S. High-speed 3D imaging with digital fringe projection techniques. CRC Press; 2018.spa
dcterms.bibliographicCitationZhang S. Recent progresses on real-time 3d shape measurement using digital fringe projection techniques. Opt Lasers Eng 2010;48(2):149–58spa
dcterms.bibliographicCitationZhang S, Huang P. Novel method for structured light system calibration. Opt Eng 2006;45. https://doi.org/10.1117/1.2336196.spa
dcterms.bibliographicCitationBu L, Wang R, Wang X, Hou Z, Zhou Y, Wang Y, et al. Calibration method for fringe projection profilometry based on rational function lens distortion model. Measurement 2023:112996.spa
dcterms.bibliographicCitationLiu Y, Zhang B, Yuan X, Lin J, Jiang K. An improved projector calibration method by phase mapping based on fringe projection profilometry. Sensors 2023;23(3):1142.spa
dcterms.bibliographicCitationVargas R, Marrugo AG, Zhang S, Romero LA. Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting. Appl Opt 2020;59(13):D163–9spa
dcterms.bibliographicCitationVargas R, Marrugo AG, Pineda J, Meneses J, Romero LA. Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study. Opt Pura Appl 2018;51(3):1–10. https:// doi.org/10.7149/OPA.51.3.50305spa
dcterms.bibliographicCitationFeng S, Zuo C, Zhang L, Tao T, Hu Y, Yin W, et al. Calibration of fringe projection profilometry: a comparative review. Opt Lasers Eng 2021;143:106622spa
dcterms.bibliographicCitationJuarez-Salazar R, Diaz-Ramirez VH. Flexible camera-projector calibration using superposed color checkerboards. Opt Lasers Eng 2019;120:59–65spa
dcterms.bibliographicCitationXing S, Guo H. Iterative calibration method for measurement system having lens distortions in fringe projection profilometry. Opt Express 2020;28(2):1177–96.spa
dcterms.bibliographicCitationYu J, Gao N, Meng Z, Zhang Z. A three-dimensional measurement system calibration method based on red/blue orthogonal fringe projection. Opt Lasers Eng 2021;139:106506.spa
dcterms.bibliographicCitationYu J, Gao N, Meng Z, Zhang Z. High-accuracy projector calibration method for fringe projection profilometry considering perspective transformation. Opt Express 2021;29(10):15053–66.spa
dcterms.bibliographicCitationZhang S. Flexible and high-accuracy method for uni-directional structured light system calibration. Opt Lasers Eng 2021;143:106637.spa
dcterms.bibliographicCitationZhang S. Flexible and high-accuracy method for uni-directional structured light system calibration. Opt Lasers Eng 2021;143:106637.spa
dcterms.bibliographicCitationMarrugo AG, Vargas R, Romero LA, Zhang S. Method for large-scale structured-light system calibration. Opt Express 2021;29(11):17316–29spa
dcterms.bibliographicCitationZhang S. Absolute phase retrieval methods for digital fringe projection profilometry: a review. Opt Lasers Eng 2018;107:28–37spa
dcterms.bibliographicCitationZhang S. Pixel-wise structured light calibration method with a color calibration target. Opt Express 2022;30(20):35817–27.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1016/j.optlaseng.2024.108496
dc.subject.keywordsCalibrationspa
dc.subject.keywordsStructured lightspa
dc.subject.keywordsFringe projection3D imagingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.