Mostrar el registro sencillo del ítem

dc.contributor.authorMuentes Acevedo, Jeovanny de Jesus
dc.contributor.authorBecker, Alex Jenaro
dc.contributor.authorBaraviera, Alexandre
dc.contributor.authorScopel, Érick
dc.date.accessioned2024-09-02T19:25:53Z
dc.date.available2024-09-02T19:25:53Z
dc.date.issued2024-07-07
dc.date.submitted2024-09-02
dc.identifier.citationMuentes, J., Becker, A.J., Baraviera, A.T. et al. Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric. Qual. Theory Dyn. Syst. 23 (Suppl 1), 261 (2024). https://doi.org/10.1007/s12346-024-01100-1spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12713
dc.description.abstractLet f : M → M be a continuous map on a compact metric space M equipped with a fixed metric d, and let τ be the topology on M induced by d. We denote by M(τ) the set consisting of all metrics on M that are equivalent to d. Let mdimM(M,d,f) and mdimH(M,d,f ) be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that mdimM(M,d,f) and mdimH(M,d,f) depend on the metric d chosen for M. In this work, we will prove that, for a fixed dynamical system f : M → M, the functions mdimM(M, f ) : M(τ) → R∪ {∞} and mdimH(M,f) : M(τ ) → R∪ {∞} are not continuous, where mdimM(M,f)(ρ) = mdimM(M,ρ,f) and mdimH(M,f)(ρ) = mdimH(M,ρ,f) for any ρ ∈ M(τ). Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.spa
dc.format.extent35 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceQualitative Theory of Dynamical Systemsspa
dc.titleMetric Mean Dimension and Mean Hausdorff Dimension Varying the Metricspa
dcterms.bibliographicCitationAcevedo, J.M.: Genericity of continuous maps with positive metric mean dimension. RM 77(1), 1-30 (2022)spa
dcterms.bibliographicCitationAcevedo, J.M.: Genericity of homeomorphisms with full mean Hausdorff dimension. Regul. Chaotic Dyn. 29, 1-17 (2024)spa
dcterms.bibliographicCitationAcevedo, J.M., Romaña, S., Arias, R.: Density of the level sets of the metric mean dimension for homeomorphisms. J. Dyn. Differ. Equ. 1-14 (2024)spa
dcterms.bibliographicCitationBackes, L., Rodrigues, F.B.: A Variational Principle for the Metric Mean Dimension of Level Sets. IEEE Trans. Inf. Theory 69(9), 5485-5496 (2023)spa
dcterms.bibliographicCitationCarvalho, M., Pessil, G., Varandas, P.: A convex analysis approach to the metric mean dimension: limits of scaled pressures and variational principles. Adv. Math. 436, 109407 (2024)spa
dcterms.bibliographicCitationCarvalho, M., Rodrigues, F.B., Varandas, P.: Generic homeomorphisms have full metric mean dimension. Ergod. Theory Dyn. Syst. 42(1), 40–64 (2022)spa
dcterms.bibliographicCitationCheng, D., Li, Z., Selmi, B.: Upper metric mean dimensions with potential on subsets. Nonlinearity 34(2), 852 (2021)spa
dcterms.bibliographicCitationDou, D.: Minimal subshifts of arbitrarymean topological dimension. Discrete Contin.Dyn. Syst. 37(3), 1411-1424 (2016)spa
dcterms.bibliographicCitationFalconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley (2004)spa
dcterms.bibliographicCitationFurstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1-49 (1967)spa
dcterms.bibliographicCitationGromov, M.: Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom. 2(4), 323-415 (1999)spa
dcterms.bibliographicCitationGutman, Y.: Embedding topological dynamical systems with periodic points in cubical shifts. Ergod. Theory Dyn. Syst. 37(2), 512–538 (2017)spa
dcterms.bibliographicCitationGutman, Y., Qiao, Y., Tsukamoto, M.: Application of signal analysis to the embedding problem of Zk -actions. Geom. Funct. Anal. 29(5), 1440-1502 (2019)spa
dcterms.bibliographicCitationKloeckner, B., Mihalache, N.: An invitation to rough dynamics: zipper maps. arXiv preprint arXiv:2210.13038 (2022)spa
dcterms.bibliographicCitationLacerda, G., Romaña, S.: Typical conservative homeomorphisms have total metric mean dimension. arXiv preprint arXiv:2311.03607 (2023)spa
dcterms.bibliographicCitationLindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000)spa
dcterms.bibliographicCitationLiu, Y., Selmi, B., Li, Z.: On the mean fractal dimensions of the Cartesian product sets. Chaos, Solitons & Fractals 180, 114503 (2024)spa
dcterms.bibliographicCitationLindenstrauss, E., Tsukamoto, M.: Double variational principle for mean dimension. Geom. Funct. Anal. 29(4), 1048–1109 (2019)spa
dcterms.bibliographicCitationLindenstrauss, E.: Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Etudes Sci. Publ. Math. 89, 227–262 (1999)spa
dcterms.bibliographicCitationMa, X., Yang, J., Chen, E.: Mean topological dimension for random bundle transformations. Ergod. Theory Dyn. Syst. 39(4), 1020–1041 (2019)spa
dcterms.bibliographicCitationShinoda, M., Tsukamoto, M.: Symbolic dynamics in mean dimension theory. Ergod. Theory Dyn. Syst. 41(8), 2542–2560 (2021)spa
dcterms.bibliographicCitationSalat, T., Toth, J., Zsilinszky, L.: Metric space of metrics defined on a given set. Real Anal. Exch. 18(1), 225–231 (1992-1993)spa
dcterms.bibliographicCitationTsukamoto, M.: Mean dimension of full shifts. Israel J. Math. 230(1), 183–193 (2019)spa
dcterms.bibliographicCitationVelozo, A., Velozo, R.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv preprint arXiv:1707.05762 (2017)spa
dcterms.bibliographicCitationYang, R., Chen, E., Zhou, X.: Bowen’s equations for upper metric mean dimension with potential. Nonlinearity 35(9), 4905 (2022)spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1007/s12346-024-01100-1
dc.subject.keywordsMean topological dimensionspa
dc.subject.keywordsMetric mean dimensionspa
dc.subject.keywordsMean Hausdorff dimensionspa
dc.subject.keywordsTopological entropyspa
dc.subject.keywordsBox dimensionspa
dc.subject.keywordsHausdorff dimensionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.