Mostrar el registro sencillo del ítem

dc.contributor.authorHernandez Fernandez, Joaquin
dc.contributor.authorOrtega-Toro, Rodrigo
dc.contributor.authorCastro-Suarez, John R.
dc.date.accessioned2024-08-14T12:16:25Z
dc.date.available2024-08-14T12:16:25Z
dc.date.issued2024-07-21
dc.date.submitted2024-08
dc.identifier.citationFernandez, J.H.; Ortega-Toro, R.; Castro-Suarez, J.R. Multiple Traces of Families of Epoxy Derivatives as New Inhibitors of the Industrial Polymerization Reaction of Propylene. Polymers 2024, 16, 2080. https://doi.org/10.3390/polym16142080spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12710
dc.description.abstractIn this study, the impact of ethylene oxide, propylene oxide, 1,2-butene oxide, and 1,2- pentene oxide on the polymerization of propylene at an industrial level was investigated, focusing on their influence on the catalytic efficiency and the properties of polypropylene (PP) without additives. The results show that concentrations between 0 and 1.24 ppm of these epoxides negatively affect the reaction’s productivity, the PP’s mechanical properties, the polymer’s fluidity index, and the PP’s thermal properties. Fourier transform infrared spectroscopy (FTIR) revealed bands for the Ti-O bond and the Cl-Ti-O-CH2 bonds at 430 to 475 cm−1 and 957 to 1037 cm−1, respectively, indicating the interaction between the epoxides and the Ziegler–Natta catalyst. The thermal degradation of PP in the presence of these epoxides showed a similar trend, varying in magnitude depending on the concentration of the inhibitor. Sample M7, with 0.021 ppm propylene oxide, exhibited significant mass loss at both 540 ◦C and 600 ◦C, suggesting that even small concentrations of this epoxide can markedly increase the thermal degradation of PP. This pattern is repeated in samples with 1,2-butene oxide and 1,2-pentene oxide. These results highlight the need to strictly control the presence of impurities in PP production to optimize both the final product’s quality and the polymerization process’s efficiency.spa
dc.format.extent16 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourcePolymersspa
dc.titleMultiple Traces of Families of Epoxy Derivatives as New Inhibitors of the Industrial Polymerization Reaction of Propylenespa
dcterms.bibliographicCitationTangjituabun, K.; Kim, S.Y.; Hiraoka, Y.; Taniike, T.; Terano, M.; Jongsomjit, B.; Praserthdam, P. Effects of various poisoning compounds on the activity and stereospecificity of heterogeneous Ziegler–Natta catalyst. Sci. Technol. Adv. Mater. 2008, 9, 4.spa
dcterms.bibliographicCitationHadian, N.; Hakim, S.; Nekoomanesh-Haghighi, M.; Bahri-Laleh, N. Storage time effect on dynamic structure of MgCl2.nEtOH adducts in heterogeneous Ziegler-Natta catalysts. Polyolefins J. 2014, 1, 33–34.spa
dcterms.bibliographicCitationMalani, H.; Hayashi, S.; Zhong, H.; Sahnoun, R.; Tsuboi, H.; Koyama, M.; Hatakeyama, N.; Endou, A.; Takaba, H.; Kubo, M.; et al. Theoretical investigation of ethylene/1-butene copolymerization process using constrained geometry catalyst (CpSiH2NH)-Ti-Cl2. Appl. Surf. Sci. 2008, 254, 7608–7611spa
dcterms.bibliographicCitationXie, K.; Huang, A.; Zhu, B.; Xu, J.; Liu, P. Periodic DFT investigation of methanol coverage on surfaces of MgCl2-supported Ziegler–Natta catalysts. Appl. Surf. Sci. 2015, 356, 967–971spa
dcterms.bibliographicCitationArgyle, M.D.; Bartholomew, C.H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts 2015, 5, 145–269.spa
dcterms.bibliographicCitationBahri-Laleh, N. Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl. Surf. Sci. 2016, 379, 395–401.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Marquez, E. Study of the Chemical Activities of Carbon Monoxide, Carbon Dioxide, and Oxygen Traces as Critical Inhibitors of Polypropylene Synthesis. Polymers 2024, 16, 605spa
dcterms.bibliographicCitationHernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reaction. Polymers 2023, 15, 3619spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910spa
dcterms.bibliographicCitationVizen, E.I.; Rishina, L.A.; Sosnovskaja, L.N.; Dyachkovsky, F.S.; Dubnikova, I.L.; Ladygina, T.A. Study of hydrogen effect in propylene polymerization on (with) the MgCl2-supported ziegler-natta catalyst—Part 2. Effect of CS2 on polymerization centres. Eur. Polym. J. 1994, 30, 1315–1318spa
dcterms.bibliographicCitationJoaquin, H.F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736spa
dcterms.bibliographicCitationJoaquin, H.F.; Juan, L.M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385spa
dcterms.bibliographicCitationPasynkiewicz, S. Reactions of organoaluminium compounds with electron donors. Pure Appl. Chem. 1972, 30, 509–522spa
dcterms.bibliographicCitationCheremisinoff, N.P. Handbook of Polymer Science and Technology: Performance Properties of Plastics and Elastomers: Volume 2; CRC Press: Boca Raton, FL, USA, 2023; Volume 2, pp. 1–743.spa
dcterms.bibliographicCitationMehdizadeh, M.; Karkhaneh, F.; Nekoomanesh, M.; Sadjadi, S.; Emami, M.; Teimoury, H.; Salimi, M.; Solà, M.; Poater, A.; Bahri-Laleh, N.; et al. Influence of the Ethanol Content of Adduct on the Comonomer Incorporation of Related Ziegler–Natta Catalysts in Propylene (Co)polymerizations. Polymers 2023, 15, 4476spa
dcterms.bibliographicCitationHernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Evaluation of the Reactivity of Methanol and Hydrogen Sulfide Residues with the Ziegler–Natta Catalyst during Polypropylene Synthesis and Its Effects on Polymer Properties. Polymers 2023, 15, 4061spa
dcterms.bibliographicCitationLundeen, A.J.; Oehlschlager, A.C. The reaction of triethylaluminum with epoxides. J. Organomet. Chem. 1970, 25, 337–344.spa
dcterms.bibliographicCitationAshby, E.C.; Smith, R.S. Concerning the Mechanism of Trimethylaluminum Addition to Benzophenone. J. Org. Chem. 1977, 42, 425–427.spa
dcterms.bibliographicCitationSinha, A.K.; Narang, H.K.; Bhattacharya, S. Mechanical properties of hybrid polymer composites: A review. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 431spa
dcterms.bibliographicCitationRedzic, E.; Garoff, T.; Mardare, C.C.; List, M.; Hesser, G.; Mayrhofer, L.; Hassel, A.W.; Paulik, C. Heterogeneous Ziegler-Natta catalysts with various sizes of MgCl2 crystallites: Synthesis and characterization. Iran. Polym. J. 2016, 25, 321–337spa
dcterms.bibliographicCitationAbazari, M.; Jamjah, R.; Bahri-Laleh, N.; Hanifpour, A. Synthesis and evaluation of a new high-performance trimetallic Ziegler- Natta catalyst for ethylene polymerization: Experimental and computational studies. Polym. Bull. 2021, 79, 7265–7280.spa
dcterms.bibliographicCitationPernusch, D.C.; Spiegel, G.; Paulik, C.; Hofer, W. Influence of Poisons Originating from Chemically Recycled Plastic Waste on the Performance of Ziegler–Natta Catalysts. Macromol. React. Eng. 2022, 16, 2100020spa
dcterms.bibliographicCitationPraserthdam, P.; Jongsomjit, B.; Tangjituabun, K.; Khaubunsongserm, S.; Puriwathana, A.; Kim, S.Y.; Hiraoka, Y.; Taniike, T.; Terano, M. Effect of SiO2, CaO, Mixed Lewis Acids, Mixed Co-Catalysts and Poisons on Ziegler-Natta Catalysts. In Proceedings of the 24th North American Catalysis Society Meeting, Pittsburgh, PA, USA, 14–19 June 2015.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/polym16142080
dc.subject.keywordsPolypropylenespa
dc.subject.keywordsCatalytic efficiencyspa
dc.subject.keywordsZiegler–Natta systemspa
dc.subject.keywordsInhibitorsspa
dc.subject.keywordsImpuritiesspa
dc.subject.keywordsPolymerizationspa
dc.subject.keywordsEpoxidesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.