Mostrar el registro sencillo del ítem
Multiple Traces of Families of Epoxy Derivatives as New Inhibitors of the Industrial Polymerization Reaction of Propylene
dc.contributor.author | Hernandez Fernandez, Joaquin | |
dc.contributor.author | Ortega-Toro, Rodrigo | |
dc.contributor.author | Castro-Suarez, John R. | |
dc.date.accessioned | 2024-08-14T12:16:25Z | |
dc.date.available | 2024-08-14T12:16:25Z | |
dc.date.issued | 2024-07-21 | |
dc.date.submitted | 2024-08 | |
dc.identifier.citation | Fernandez, J.H.; Ortega-Toro, R.; Castro-Suarez, J.R. Multiple Traces of Families of Epoxy Derivatives as New Inhibitors of the Industrial Polymerization Reaction of Propylene. Polymers 2024, 16, 2080. https://doi.org/10.3390/polym16142080 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12710 | |
dc.description.abstract | In this study, the impact of ethylene oxide, propylene oxide, 1,2-butene oxide, and 1,2- pentene oxide on the polymerization of propylene at an industrial level was investigated, focusing on their influence on the catalytic efficiency and the properties of polypropylene (PP) without additives. The results show that concentrations between 0 and 1.24 ppm of these epoxides negatively affect the reaction’s productivity, the PP’s mechanical properties, the polymer’s fluidity index, and the PP’s thermal properties. Fourier transform infrared spectroscopy (FTIR) revealed bands for the Ti-O bond and the Cl-Ti-O-CH2 bonds at 430 to 475 cm−1 and 957 to 1037 cm−1, respectively, indicating the interaction between the epoxides and the Ziegler–Natta catalyst. The thermal degradation of PP in the presence of these epoxides showed a similar trend, varying in magnitude depending on the concentration of the inhibitor. Sample M7, with 0.021 ppm propylene oxide, exhibited significant mass loss at both 540 ◦C and 600 ◦C, suggesting that even small concentrations of this epoxide can markedly increase the thermal degradation of PP. This pattern is repeated in samples with 1,2-butene oxide and 1,2-pentene oxide. These results highlight the need to strictly control the presence of impurities in PP production to optimize both the final product’s quality and the polymerization process’s efficiency. | spa |
dc.format.extent | 16 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Polymers | spa |
dc.title | Multiple Traces of Families of Epoxy Derivatives as New Inhibitors of the Industrial Polymerization Reaction of Propylene | spa |
dcterms.bibliographicCitation | Tangjituabun, K.; Kim, S.Y.; Hiraoka, Y.; Taniike, T.; Terano, M.; Jongsomjit, B.; Praserthdam, P. Effects of various poisoning compounds on the activity and stereospecificity of heterogeneous Ziegler–Natta catalyst. Sci. Technol. Adv. Mater. 2008, 9, 4. | spa |
dcterms.bibliographicCitation | Hadian, N.; Hakim, S.; Nekoomanesh-Haghighi, M.; Bahri-Laleh, N. Storage time effect on dynamic structure of MgCl2.nEtOH adducts in heterogeneous Ziegler-Natta catalysts. Polyolefins J. 2014, 1, 33–34. | spa |
dcterms.bibliographicCitation | Malani, H.; Hayashi, S.; Zhong, H.; Sahnoun, R.; Tsuboi, H.; Koyama, M.; Hatakeyama, N.; Endou, A.; Takaba, H.; Kubo, M.; et al. Theoretical investigation of ethylene/1-butene copolymerization process using constrained geometry catalyst (CpSiH2NH)-Ti-Cl2. Appl. Surf. Sci. 2008, 254, 7608–7611 | spa |
dcterms.bibliographicCitation | Xie, K.; Huang, A.; Zhu, B.; Xu, J.; Liu, P. Periodic DFT investigation of methanol coverage on surfaces of MgCl2-supported Ziegler–Natta catalysts. Appl. Surf. Sci. 2015, 356, 967–971 | spa |
dcterms.bibliographicCitation | Argyle, M.D.; Bartholomew, C.H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts 2015, 5, 145–269. | spa |
dcterms.bibliographicCitation | Bahri-Laleh, N. Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl. Surf. Sci. 2016, 379, 395–401. | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Puello-Polo, E.; Marquez, E. Study of the Chemical Activities of Carbon Monoxide, Carbon Dioxide, and Oxygen Traces as Critical Inhibitors of Polypropylene Synthesis. Polymers 2024, 16, 605 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reaction. Polymers 2023, 15, 3619 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910 | spa |
dcterms.bibliographicCitation | Vizen, E.I.; Rishina, L.A.; Sosnovskaja, L.N.; Dyachkovsky, F.S.; Dubnikova, I.L.; Ladygina, T.A. Study of hydrogen effect in propylene polymerization on (with) the MgCl2-supported ziegler-natta catalyst—Part 2. Effect of CS2 on polymerization centres. Eur. Polym. J. 1994, 30, 1315–1318 | spa |
dcterms.bibliographicCitation | Joaquin, H.F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736 | spa |
dcterms.bibliographicCitation | Joaquin, H.F.; Juan, L.M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385 | spa |
dcterms.bibliographicCitation | Pasynkiewicz, S. Reactions of organoaluminium compounds with electron donors. Pure Appl. Chem. 1972, 30, 509–522 | spa |
dcterms.bibliographicCitation | Cheremisinoff, N.P. Handbook of Polymer Science and Technology: Performance Properties of Plastics and Elastomers: Volume 2; CRC Press: Boca Raton, FL, USA, 2023; Volume 2, pp. 1–743. | spa |
dcterms.bibliographicCitation | Mehdizadeh, M.; Karkhaneh, F.; Nekoomanesh, M.; Sadjadi, S.; Emami, M.; Teimoury, H.; Salimi, M.; Solà, M.; Poater, A.; Bahri-Laleh, N.; et al. Influence of the Ethanol Content of Adduct on the Comonomer Incorporation of Related Ziegler–Natta Catalysts in Propylene (Co)polymerizations. Polymers 2023, 15, 4476 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Evaluation of the Reactivity of Methanol and Hydrogen Sulfide Residues with the Ziegler–Natta Catalyst during Polypropylene Synthesis and Its Effects on Polymer Properties. Polymers 2023, 15, 4061 | spa |
dcterms.bibliographicCitation | Lundeen, A.J.; Oehlschlager, A.C. The reaction of triethylaluminum with epoxides. J. Organomet. Chem. 1970, 25, 337–344. | spa |
dcterms.bibliographicCitation | Ashby, E.C.; Smith, R.S. Concerning the Mechanism of Trimethylaluminum Addition to Benzophenone. J. Org. Chem. 1977, 42, 425–427. | spa |
dcterms.bibliographicCitation | Sinha, A.K.; Narang, H.K.; Bhattacharya, S. Mechanical properties of hybrid polymer composites: A review. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 431 | spa |
dcterms.bibliographicCitation | Redzic, E.; Garoff, T.; Mardare, C.C.; List, M.; Hesser, G.; Mayrhofer, L.; Hassel, A.W.; Paulik, C. Heterogeneous Ziegler-Natta catalysts with various sizes of MgCl2 crystallites: Synthesis and characterization. Iran. Polym. J. 2016, 25, 321–337 | spa |
dcterms.bibliographicCitation | Abazari, M.; Jamjah, R.; Bahri-Laleh, N.; Hanifpour, A. Synthesis and evaluation of a new high-performance trimetallic Ziegler- Natta catalyst for ethylene polymerization: Experimental and computational studies. Polym. Bull. 2021, 79, 7265–7280. | spa |
dcterms.bibliographicCitation | Pernusch, D.C.; Spiegel, G.; Paulik, C.; Hofer, W. Influence of Poisons Originating from Chemically Recycled Plastic Waste on the Performance of Ziegler–Natta Catalysts. Macromol. React. Eng. 2022, 16, 2100020 | spa |
dcterms.bibliographicCitation | Praserthdam, P.; Jongsomjit, B.; Tangjituabun, K.; Khaubunsongserm, S.; Puriwathana, A.; Kim, S.Y.; Hiraoka, Y.; Taniike, T.; Terano, M. Effect of SiO2, CaO, Mixed Lewis Acids, Mixed Co-Catalysts and Poisons on Ziegler-Natta Catalysts. In Proceedings of the 24th North American Catalysis Society Meeting, Pittsburgh, PA, USA, 14–19 June 2015. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/polym16142080 | |
dc.subject.keywords | Polypropylene | spa |
dc.subject.keywords | Catalytic efficiency | spa |
dc.subject.keywords | Ziegler–Natta system | spa |
dc.subject.keywords | Inhibitors | spa |
dc.subject.keywords | Impurities | spa |
dc.subject.keywords | Polymerization | spa |
dc.subject.keywords | Epoxides | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.