Mostrar el registro sencillo del ítem

dc.contributor.authorHernandez Fernandez, Joaquin
dc.contributor.authorBello-Leon, Elias
dc.contributor.authorCarrascal, Juan
dc.date.accessioned2024-08-14T12:15:59Z
dc.date.available2024-08-14T12:15:59Z
dc.date.issued2024-06-11
dc.date.submitted2024-08-13
dc.identifier.citationHernández-Fernández, J.; Bello-Leon, E.; Carrascal, J. Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management. Molecules 2024, 29, 2780. https:// doi.org/10.3390/molecules29122780spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12709
dc.description.abstractOrganic phosphoester (OPE) antioxidants are currently required due to their contribution to enhancing the quality of polymers, including polypropylene (PP). In this research, an integral methodology is presented for the efficient extraction of bis(2,4-dicumylphenyl) pentaerythritol diphosphite from industrial wastewater. Upon employing the solid-phase extraction (SPE) technique, the recovered compound is subjected to a comprehensive analysis of the recovered compound using high-performance liquid chromatography (HPLC), mass spectrometry (MS), thermal analysis (TGA), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Subsequently, purified Bis(2,4-dicumylphenyl) pentaerythritol diphosphite was evaluated as a thermooxidative stabilizer after incorporation into PP resins. The relative standard deviation (RSD), Error (Er), linearity (R2), and percentage (%) recovery were less than 2.6, 2.5, more significant than 0.9995, and greater than 96%, respectively, for the inter-day and intra-day tests of the chromatographic method and the SPE. Except for chloroform, which was necessary due to the solubility properties of the investigated analyte, the use of environmentally friendly solvents, such as methanol and acetonitrile, was considered during the development of this research. The OPE extracted from industrial wastewater was characterized by FTIR, UV–Vis, DSC, TGA, and MS, allowing the elucidation of the structure of Bis(2,4-dicumylphenyl) pentaerythritol diphosphite (BDPD). The recovered OPE was mixed with PP resins, allowing it to improve its thermal properties and minimize its thermo-oxidative degradation. Organophosphorus flame retardant (OPE)’ concentration in wastewater is alarming, ranging from 1179.0 to 4709.6 mg L−1. These exceed toxicity thresholds for aquatic organisms, emphasizing global environmental risks. Using a validated solid-phase extraction (SPE) technique with over 94% recovery, the study addresses concerns by removing organic contaminants and supporting circular economy principles. The high economic and environmental significance of recovering BDPD underscores the need for urgent global attention and intervention.spa
dc.format.extent20 paginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceMoleculesspa
dc.titleRecovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Managementspa
dcterms.bibliographicCitationVila-Costa, M.; Martinez-Varela, A.; Rivas, D.; Martinez, P.; Pérez-López, C.; Zonja, B.; Montemurro, N.; Tauler, R.; Barceló, D.; Ginebreda, A. Advanced analytical, chemometric, and genomic tools to identify polymer degradation products and potential microbial consumers in wastewater environments. Chem. Eng. J. 2022, 442, 136175.spa
dcterms.bibliographicCitationArdusso, M.; Forero-López, A.; Buzzi, N.; Spetter, C.; Severini, F. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci. Total Environ. 2021, 763, 144365spa
dcterms.bibliographicCitationPlastics–The Facts 2018; PlasticsEurope: Brussels, Belgium, 2018.spa
dcterms.bibliographicCitationZhao, X.; Korey, M.; Li, K.; Copenhaver, K.; Tekinalp, H.; Celik, S.; Kalaitzidou, K.; Ruan, R.; Ragauskas, A.J.; Ozcan, S. Plastic waste upcycling toward a circular economy. Chem. Eng. J. 2022, 428, 131928spa
dcterms.bibliographicCitationPlastics Europe. Market data Archives. Available online: https://plasticseurope.org/resources/market-data/ (accessed on 21 February 2023).spa
dcterms.bibliographicCitationCarney Almroth, B.; Eggert, H. Marine Plastic Pollution: Sources, Impacts, and Policy Issues. Rev. Environ. Econ. Policy 2019, 13, 317–326.spa
dcterms.bibliographicCitationEriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913spa
dcterms.bibliographicCitationThushari, G.G.N.; Senevirathna, J.D.M. Plastic pollution in the marine environment. Heliyon 2020, 6, e04709.spa
dcterms.bibliographicCitationGensler, R.; Plummer, C.J.G.; Kausch, H.H.; Kramer, E.; Pauquet, J.R.; Zweifel, H. Thermo-oxidative degradation of isotactic polypropylene at high temperatures: Phenolic antioxidants versus HAS. Polym. Degrad. Stab. 2000, 67, 195spa
dcterms.bibliographicCitationWang, H.; Zhang, J.; Fu, H.;Wang,W.;Wang, Q. Effect of an antioxidant on the life cycle of wood flour/polypropylene composites. J. For. Res. 2019, 31, 1435–1443spa
dcterms.bibliographicCitationAbbas-Abadi, M.S.; Haghighi, M.N.; Yeganeh, H. The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. J. Anal. Appl. Pyrolysis 2012, 95, 198–204spa
dcterms.bibliographicCitationAbbas-Abadi, M.S.; Haghighi, M.N.; Yeganeh, H. Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor. Fuel Process. Technol. 2012, 109, 90–95spa
dcterms.bibliographicCitationSakata, Y.; Uddin, M.A.; Muto, A. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. J. Anal. Appl. Pyrolysis 1999, 51, 135–155.spa
dcterms.bibliographicCitationChien, J.; Boss, C. Polymer reactions. V. Kinetics of autoxidation of polypropylene. J. Polym. Sci. Part A Polym. Chem. 1967, 5, 3091–3101spa
dcterms.bibliographicCitationOverdahl, K.E.; Sutton, R.; Sun, J.; Destefano, N.J.; Getzinger, G.J.; Ferguson, P.L. Assessment of emerging polar organic pollutants linked to contaminant pathways within an urban estuary using non-targeted analysis. Environ. Sci. Process. Impacts 2021, 23, 429–445.spa
dcterms.bibliographicCitationHe, Y.; Sang,W.; Lu,W.; Zhang,W.; Zhan, C.; Jia, D. Recent Advances of Emerging Organic Pollutants Degradation in Environment by Non-Thermal Plasma Technology: A Review. Water 2022, 14, 1351.spa
dcterms.bibliographicCitationNúñez-Delgado, A.; Zhang, Z.; Bontempi, E.; Coccia, M.; Race, M.; Zhou, Y. Editorial on the Topic “New Research on Detection and Removal of Emerging Pollutants”. Materials 2023, 16, 725.spa
dcterms.bibliographicCitationArman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects, and Treatment Processes. Water 2021, 13, 3258spa
dcterms.bibliographicCitationStefanakis, A.I.; Becker, J.A. A review of emerging contaminants in water: Classification, sources, and potential risks. In Impact of Water Pollution on Human Health and Environmental Sustainability; IGI Global: Harrisburg, PA, USA, 2015; pp. 55–80spa
dcterms.bibliographicCitationKumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A review on emerging water contaminants and the application of sustainable removal technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219spa
dcterms.bibliographicCitationLiu, R.; Song, S.; Lin, Y.; Ruan, T.; Jiang, G. Occurrence of synthetic phenolic antioxidants and major metabolites in municipal sewage sludge in China. Environ. Sci. Technol. 2015, 49, 2073–2080spa
dcterms.bibliographicCitationLiu, R.; Ruan, T.; Song, S.; Lin, Y.; Jiang, G. Determination of synthetic phenolic antioxidants and relative metabolites in the sewage treatment plant and recipient river by high-performance liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 2015, 1381, 13–21spa
dcterms.bibliographicCitationShin, C.; Kim, D.G.; Kim, J.H.; Kim, J.H.; Song, M.K.; Oh, K.S. Migration of substances from food contact plastic materials into foodstuff and their implications for human exposure. Food Chem. Toxicol. 2021, 154, 112373spa
dcterms.bibliographicCitationO’Brien, A.P. Pira International-Report for the Food Standards Agency 07A11J0587 Investigation into the Effect of Additives on Migration of Substances Originating from Colorants Used in Food Contact Plastics A03066 Final Report; Food Standards Agency: London, UK, 2010.spa
dcterms.bibliographicCitationLiu, B.; Rocca, D.; Yan, H.; Pan, D. Beyond Conformational Control: Effects of Noncovalent Interactions on Molecular Electronic Properties of Conjugated Polymers. J. Am. Chem. Soc. 2021, 1, 2182–2187spa
dcterms.bibliographicCitationHernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442spa
dcterms.bibliographicCitationLiu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719spa
dcterms.bibliographicCitationDương, T.-B.; Dwivedi, R.; Bain, L.J. 2,4-di-tert-butylphenol exposure impairs osteogenic differentiation. Toxicol. Appl. Pharmacol. 2023, 461, 116386spa
dcterms.bibliographicCitationChen, Y.; Chen, Q.; Zhang, Q.; Zuo, C.; Shi, H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 22.spa
dcterms.bibliographicCitationXu, Q.; Guan, B.; Guo, W.; Liu, X. Effect of Antioxidants on Thermo-Oxidative Stability and Aging of Bio-Based PA56T and Fast Characterization of Anti-Oxidation Performance. Polymers 2022, 14, 1280spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910.spa
dcterms.bibliographicCitationSanchez, I.C.; Chang, S.S.; McCrackin, F.L.; Smith, L.E. An Evaluation of Existing Models Describing the Migration of Additives in Polymers Prepared for Bureau of Foods Food and Drug Administration; MBS Publications: Columbia, MO, USA, 1978spa
dcterms.bibliographicCitationKida, M.; Koszelnik, P. Investigation of the Presence and Possible Migration from Microplastics of Phthalic Acid Esters and Polycyclic Aromatic Hydrocarbons. J. Polym. Environ. 2021, 29, 599–611spa
dcterms.bibliographicCitationHu, W.; Gao, P.; Wang, L.; Hu, J. Endocrine disrupting toxicity of aryl organophosphate esters and mode of action. Crit. Rev. Environ. Sci. Technol. 2022, 53, 1–18.spa
dcterms.bibliographicCitationDoherty, B.T.; Hammel, S.C.; Daniels, J.L.; Stapleton, H.M.; Hoffman, K. Organophosphate Esters: Are These Flame Retardants & Plasticizers affecting Children’s Health? Curr. Environ. Health Rep. 2019, 6, 201–213.spa
dcterms.bibliographicCitationHahladakis, J.N.; Velis, C.A.;Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal, and recycling. J. Hazard. Mater. 2018, 344, 179–199spa
dcterms.bibliographicCitationCarlsson, D.J.; Krzymien, M.E.; Deschênes, L.; Mercier, M.; Vachon, C. Phosphite additives and their transformation products in polyethylene packaging for γ-irradiation. Food Addit. Contam. 2001, 18, 581–591.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808spa
dcterms.bibliographicCitationMajoni, S.; Chaparadza, A. Thermal degradation kinetic study of polystyrene/organophosphate composite. Thermochim Acta 2018, 662, 8–15.spa
dcterms.bibliographicCitationMajoni, S. Thermal and flammability study of polystyrene composites containing magnesium-aluminum layered double hydroxide (MgAl-C16 LDH), and an organophosphate. J. Therm. Anal. Calorim. 2015, 120, 1435–1443spa
dcterms.bibliographicCitationScopus—Document Details—Additives Annual: Additives Producers Invest & Expand. Available online: https://scopus. unicartagenaproxy.elogim.com/record/display.uri?eid=2-s2.0-84858973958&origin=resultslist&sort=plf-f&src=s&sid=c72efb2 30531e5c91db2f8012cc64b5b&sot=b&sdt=b&s=TITLE-ABS-KEY(doverphos)&sl=24&sessionSearchId=c72efb230531e5c91db2f8 012cc64b5b (accessed on 22 February 2023).spa
dcterms.bibliographicCitationChaco, H.; Cano, H.; Hernandez-Fernandez, J.; Guerra, Y.; Puello-Polo, E.; Rios-Rojas, J.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753.spa
dcterms.bibliographicCitationBekele, T.G.; Zhao, H.; Yang, J.; Chegen, R.G.; Chen, J.; Mekonen, S.; Qadeer, A. A review of environmental occurrence, analysis, bioaccumulation, and toxicity of organophosphate esters. Environ. Sci. Pollut. Res. 2021, 28, 49507–49528.spa
dcterms.bibliographicCitationAlsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2022, 56, 2245–2251.spa
dcterms.bibliographicCitationPaidi, M.K.; Satapute, P.; Haider, M.S.; Udikeri, S.S.; Ramachandra, Y.L.; Vo, D.-V.N.; Govarthanan, M.; Jogaiah, S. Mitigation of organophosphorus insecticides from the environment: Residual detoxification by bioweapon catalytic scavengers. Environ. Res. 2021, 200, 111368.spa
dcterms.bibliographicCitationBauer, K.N.; Tee, H.T.; Velencoso, M.M.; Wurm, F.R. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Prog. Polym. Sci. 2017, 73, 61–122spa
dcterms.bibliographicCitationSahin, C.; Karpuzcu, M.E. Mitigation of organophosphate pesticide pollution in agricultural watersheds. Sci. Total Environ. 2020, 710, 136261spa
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; López-Martinez, J. A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)–1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules 2023, 28, 2003spa
dcterms.bibliographicCitationKahraman, G.; Wang, D.Y.; von Irmer, J.; Gallei, M.; Hey-Hawkins, E.; Eren, T. Synthesis and characterization of phosphorus and carborane-containing polyoxanorbornene block copolymers. Polymers 2019, 11, 613spa
dcterms.bibliographicCitationHasan, N.; Busse, K.; Haider, T.; Wurm, F.R.; Kressler, J. Crystallization of poly(Ethylene)s with regular phosphoester defects studied at the air-water interface. Polymers 2020, 12, 2408spa
dcterms.bibliographicCitationSteinbach, T.; Schröder, R.; Ritz, S.; Wurm, F.R. Microstructure analysis of biocompatible phosphoester copolymers. Polym. Chem. 2013, 4, 4469–4479spa
dcterms.bibliographicCitationYamakita, Y.; Takeuchi, I.; Makino, K.; Terada, H.; Kikuchi, A.; Troev, K. Thermoresponsive Polyphosphoester via Polycondensation Reactions: Synthesis, Characterization, and Self-Assembly. Molecules 2022, 27, 6006spa
dcterms.bibliographicCitationFernández, J.H.; Cano, H.; Guerra, Y.; Polo, E.P.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920spa
dcterms.bibliographicCitationGonçalves-Filho, D.; de Souza, D. Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? Molecules 2022, 27, 7137.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper- billion levels of arsine and phosphine in nitrogen, hydrogen, and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial PolypropyleneWaste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [CrossRef] 57. Rawa-Adkonis, M.;Wolska, L.; Namie´snik, J. Analytical procedures for PAH and PCB determination in water samples—Error sources. Crit. Rev. Anal. Chem. 2006, 36, 63–72.spa
dcterms.bibliographicCitationBadawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487spa
dcterms.bibliographicCitationSchieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413.spa
dcterms.bibliographicCitationBanwo, K.; Olojede, A.O.; Adesulu-Dahunsi, A.T.; Verma, D.K.; Thakur, M.; Tripathy, S.; Singh, S.; Patel, A.R.; Gupta, A.K.; Aguilar, C.N.; et al. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Biosci. 2021, 43, 101320spa
dcterms.bibliographicCitationPapanastasiou, M.; McMahon, A.W.; Allen, N.S.; Doyle, A.M.; Johnson, B.J.; Keck-Antoine, K. The hydrolysis mechanism of bis(2,4-di-tert-butyl)pentaerythritol diphosphite (Alkanox P24): An atmospheric pressure photoionization mass spectrometric study. Polym. Degrad. Stab. 2006, 91, 2675–2682spa
dcterms.bibliographicCitationAoyagi, Y.; Chung, D.D.L. Effects of antioxidants and the solid component on the thermal stability of polyol-ester-based thermal pastes. J. Mater. Sci. 2007, 42, 2358–2375spa
dcterms.bibliographicCitationAuras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835.spa
dcterms.bibliographicCitationJusoh, N.; Rosly, M.B.; Othman, N.; Rahman, H.A.; Noah, N.F.M.; Sulaiman, R.N.R. Selective extraction and recovery of polyphenols from palm oil mill sterilization condensate using emulsion liquid membrane process. Environ. Sci. Pollut. Res. 2020, 27, 23246–23257spa
dcterms.bibliographicCitationStein, D.; Stevenson, D. High-performance phosphite stabilizer. J. Vinyl Addit. Technol. 2000, 6, 129–137spa
dcterms.bibliographicCitationStein, D.; Stevenson, D. Benefits of a High-Performance Phosphite in the Gamma Irradiation of Polyolefins. J. Vinyl Addit. Technol. 2001, 7, 21–23spa
dcterms.bibliographicCitationPapanastasiou, M.; McMahon, A.; Allen, N.; Johnson, B.; Keck-Antoine, K.; Santos, L.; Neumann, M. Atmospheric pressure photoionization mass spectrometry as a tool for the investigation of the hydrolysis reaction mechanisms of phosphite antioxidants. Int. J. Mass. Spectrom. 2008, 275, 45–54.spa
dcterms.bibliographicCitationSeo, J.S.; Shin, S.Y. A Study on the Physical Properties of Polycarbonate/Acrylonitrile-Butadiene-Styrene Blends with Various Thermal Stabilizers to Secure the Safety of Automobile Passengers. J. Macromol. Sci. Part B Phys. 2021, 60, 402–415spa
dcterms.bibliographicCitationPolidar, M.; Metzsch-Zilligen, E.; Pfaendner, R. Controlled and Accelerated Hydrolysis of Polylactide (PLA) through Pentaerythritol Phosphites with Acid Scavengers. Polymers 2022, 14, 4237spa
dcterms.bibliographicCitationGHS Classification Summary. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ghs/#_precSupplementaryMaterial (accessed on 1 February 2024).spa
dcterms.bibliographicCitation3,9-Bis(2,4-dicumylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane. PubChem. Available online: https://pubchem. ncbi.nlm.nih.gov/compound/164499#datasheet=LCSS&section=GHS-Classification (accessed on 1 February 2024).spa
dcterms.bibliographicCitationRadelyuk, I.; Tussupova, K.; Klemeš, J.J.; Persson, K.M. Oil refinery and water pollution in the context of sustainable development: Developing and developed countries. J. Clean. Prod. 2021, 302, 126987spa
dcterms.bibliographicCitationHernandez-Fernandez, J.; Cano, H.; Guerra, Y. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832spa
dcterms.bibliographicCitationAoyagi, Y.; Chung, D.D.L. Antioxidant-based phase-change thermal interface materials with high thermal stability. J. Electron. Mater. 2008, 37, 448–461spa
dcterms.bibliographicCitationMa, J.; Xiao, R.; Li, J.; Yu, J.; Zhang, Y.; Chen, L. Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography-mass spectrometry. J. Chromatogr. A 2010, 1217, 5462–5469spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/molecules29122780
dc.subject.keywordsExtractionspa
dc.subject.keywordsOrganicspa
dc.subject.keywordsAntioxidants phenolics phosphoestersspa
dc.subject.keywordsPolypropylenespa
dc.subject.keywordsIndustrialspa
dc.subject.keywordsWastewaterspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.