Mostrar el registro sencillo del ítem

dc.contributor.authorHernandez Fernandez, Joaquin
dc.contributor.authorCarrascal Sanchez, Juan
dc.contributor.authorLopez Martinez, Juan
dc.coverage.spatialCartagena
dc.date.accessioned2024-08-14T12:13:45Z
dc.date.available2024-08-14T12:13:45Z
dc.date.issued2024-07-11
dc.date.submitted2024-08-13
dc.identifier.citationHernandez-Fernandez, J.; Sanchez, J.C.; Martinez, J.L. Sustainable Catalysts from Industrial FeO Waste for Pyrolysis and Oxidation of Hospital Polypropylene in Cartagena. Sustainability 2024, 16, 5934. https://doi.org/10.3390/su16145934spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12707
dc.description.abstractDuring the COVID-19 pandemic, polypropylene waste generated in hospitals increased significantly. However, conventional strategies for the final disposal of environmental waste, such as incineration, proved inefficient due to the generation of toxic chemical species. In this research, these PP wastes were mixed with 1.5, 20, 150, 200, and 400 mg of iron oxide (FeO), extruded, and pelletized to obtain samples HW-PP-0, HW-PP-1, HW-PP-2, HW-PP-3, and HW-PP-4, respectively. XRF, TGA, and GC-MS characterized these samples. The samples were subjected to pyrolysis and thermo-oxidative degradation with controlled currents of nitrogen and oxygen. The characterization of the gases resulting from pyrolysis was carried out with a GC-MS, where the results showed that HW-PP-0 (mixed with 1.5 mg of FeO) presented the highest concentrations of alkanes (35.65%) and alkenes (63.7%), and the lowest levels of alkynes (0.3%), alcohols (0.12%), ketones (0.04%), and carboxylic acids (0.2%). The opposite was observed with the hospital waste HW-PP-4 (mixed with 400 mg of FeO), which presented the highest levels of alkynes (2.93%), alcohols (28.1%), ketones (9.8%), and carboxylic acids (8%). The effect of FeO on HW-PP-O during thermo-oxidative degradation generated values of alkanes (11%) and alkenes (30%) lower than those during pyrolysis. The results showed the catalytic power of FeO and its linear relationship with concentration. This research proposes the mechanisms that can explain the formation of different functional groups of various molecular weights which allow us to understand the presence of alkanes, alkenes, alkynes, alcohols, ketones, and carboxylic acids.spa
dc.format.extent22 paginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceSustainability 2024, 16(14)spa
dc.titleSustainable Catalysts from Industrial FeO Waste for Pyrolysis and Oxidation of Hospital Polypropylene in Cartagenaspa
dcterms.bibliographicCitationRajmohan, K.V.S.; Ramya, C.; Viswanathan, M.R.; Varjani, S. Plastic pollutants: Effective waste management for pollution control and abatement. Curr. Opin. Environ. Sci. Health 2019, 12, 72–84. https://doi.org/10.1016/J.COESH.2019.08.006.spa
dcterms.bibliographicCitationWindfeld, E.S.; Brooks, M.S.L. Medical waste management—A review. J. Environ. Manag. 2015, 163, 98–108. https://doi.org/10.1016/J.JENVMAN.2015.08.013.spa
dcterms.bibliographicCitationPlasticsEurope. Plastics‐the Facts 2016 An Analysis of European Plastics Production, Demand and Waste Data; PlasticsEurope: Brussels, Belgium, 2016.spa
dcterms.bibliographicCitationHahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. https://doi.org/10.1016/J.JHAZMAT.2017.10.014.spa
dcterms.bibliographicCitationGeyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. https://doi.org/10.1126/SCIADV.1700782.spa
dcterms.bibliographicCitationZheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. https://doi.org/10.1038/s41558-019-0459-z.spa
dcterms.bibliographicCitationJambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. https://doi.org/10.1126/SCIENCE.1260352/SUPPL_FILE/JAMBECK.SM.PDF.spa
dcterms.bibliographicCitationMacKenzie, D. COVID-19 goes global. New Sci. 2020, 245, 7. https://doi.org/10.1016/S0262-4079(20)30424-3.spa
dcterms.bibliographicCitationBabaji, P.; Singh, A.; Lau, H.; Lamba, G.; Somasundaram, P. Deletion of short arm of chromosome 18, Del(18p) syndrome. J. Indian Soc. Pedod. Prev. Dent. 2014, 32, 68–70. https://doi.org/10.4103/0970-4388.127063.spa
dcterms.bibliographicCitationSelvaraj, D.; Raja, J.; Prasath, S. Interdisciplinary approach for bilateral maxillary canine: First premolar transposition with complex problems in an adult patient. J. Pharm. Bioallied Sci. 2013, 5 (Suppl. 2), S190–S194. https://doi.org/10.4103/0975-7406.114319.spa
dcterms.bibliographicCitationLiu, H.C.; You, J.X.; Lu, C.; Chen, Y.Z. Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renew. Sustain. Energy Rev. 2015, 41, 932–942. https://doi.org/10.1016/J.RSER.2014.08.061.spa
dcterms.bibliographicCitationYu, H.; Sun, X.; Solvang, W.D.; Zhao, X. Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China). Int. J. Environ. Res. Public Health 2020, 17, 1770. https://doi.org/10.3390/IJERPH17051770.spa
dcterms.bibliographicCitationKumar, N.M.; Mohammed, M.A.; Abdulkareem, K.H.; Damasevicius, R.; Mostafa, S.A.; Maashi, M.S.; Chopra, S.S. Artificial intelligence-based solution for sorting COVID related medical waste streams and supporting data-driven decisions for smart circular economy practice. Process Saf. Environ. Prot. 2021, 152, 482–494. https://doi.org/10.1016/J.PSEP.2021.06.026.spa
dcterms.bibliographicCitationIlyas, S.; Srivastava, R.R.; Kim, H. Disinfection technology and strategies for COVID-19 hospital and bio-medical waste management. Sci. Total Environ. 2020, 749, 141652. https://doi.org/10.1016/J.SCITOTENV.2020.141652.spa
dcterms.bibliographicCitationDharmaraj, S.; Ashokkumar, V.; Pandiyan, R.; Munawaroh, H.S.H.; Chew, K.W.; Chen, W.-H.; Ngamcharussrivichai, C. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere 2021, 275, 130092. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130092.spa
dcterms.bibliographicCitationCities Wonder Whether Recycling Counts as Essential During the Virus—Bloomberg. Available online: https://www.bloomberg. com/news/articles/2020-03-27/cities-wonder-whether-recycling-counts-as-essential-during-the-virus (accessed on 30 May 2024).spa
dcterms.bibliographicCitationRamadhani, B.; Kivevele, T.; Kihedu, J.H.; Jande, Y.A.C. Catalytic tar conversion and the prospective use of iron-based catalyst in the future development of biomass gasification: A review. Biomass Convers. Biorefin. 2020, 12, 1369–1392. https://doi.org/10.1007/S13399-020-00814-X.spa
dcterms.bibliographicCitationYao, D.; Wang, C.H. Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts. Appl. Energy 2020, 265, 114819. https://doi.org/10.1016/J.APENERGY.2020.114819.spa
dcterms.bibliographicCitationJin, L.; Si, H.; Zhang, J.; Lin, P.; Hu, Z.; Qiu, B.; Hu, H. Preparation of activated carbon supported Fe–Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition. Int. J. Hydrogen Energy 2013, 38, 10373–10380. https://doi.org/10.1016/J.IJHYDENE.2013.06.023.spa
dcterms.bibliographicCitationXu, L.; Lin, X.; Xi, Y.; Lu, X.; Wang, C.; Liu, C. Alumina-supported Fe catalyst prepared by vapor deposition and its catalytic performance for oxidative dehydrogenation of ethane. Mater. Res. Bull. 2014, 59, 254–260. https://doi.org/10.1016/J.MATERRESBULL. 2014.07.023.spa
dcterms.bibliographicCitationYao, D.; Li, H.; Dai, Y.; Wang, C.H. Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste. Chem. Eng. J. 2021, 408, 127268. https://doi.org/10.1016/J.CEJ.2020.127268.spa
dcterms.bibliographicCitationKumagai, S.; Hosaka, T.; Kameda, T.; Yoshioka, T. Removal of toxic HCN and recovery of H2-rich syngas via catalytic reforming of product gas from gasification of polyimide over Ni/Mg/Al catalysts. J. Anal. Appl. Pyrolysis 2017, 123, 330–339. https://doi.org/10.1016/J.JAAP.2016.11.012.spa
dcterms.bibliographicCitationRodríguez, E.; Gutiérrez, A.; Palos, R.; Vela, F.J.; Arandes, J.M.; Bilbao, J. Fuel production by cracking of polyolefins pyrolysis waxes under fluid catalytic cracking (FCC) operating conditions. Waste Manag. 2019, 93, 162–172. https://doi.org/10.1016/J.WASMAN. 2019.05.005.spa
dcterms.bibliographicCitationVeses, A.; Sanahuja-Parejo, O.; Callén, M.S.; Murillo, R.; García, T. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels. Waste Manag. 2020, 101, 171–179. https://doi.org/10.1016/J.WASMAN.2019.10.009spa
dcterms.bibliographicCitationWilliams, P.T. Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review. Waste Biomass Valorization 2021, 12, 1–28. https://doi.org/10.1007/S12649-020-01054-W/.spa
dcterms.bibliographicCitationCai, N.; Xia, S.; Li, X.; Xiao, H.; Chen, X.; Chen, Y.; Bartocci, P.; Chen, H.; Williams, P.T.; Yang, H. High-value products from exsitu catalytic pyrolysis of polypropylene waste using iron-based catalysts: The influence of support materials. Waste Manag. 2021, 136, 47–56. https://doi.org/10.1016/J.WASMAN.2021.09.030.spa
dcterms.bibliographicCitationAlptekin, F.M.; Celiktas, M.S. Review on Catalytic Biomass Gasification for Hydrogen Production as a Sustainable Energy Form and Social, Technological, Economic, Environmental, and Political Analysis of Catalysts. ACS Omega 2022, 7, 24918–24941. https://doi.org/10.1021/ACSOMEGA.2C01538/.spa
dcterms.bibliographicCitationHao, T.; Huang, Y.; Li, F.; Wu, Y.; Fang, L. Facet-dependent Fe(II) redox chemistry on iron oxide for organic pollutant transformation and mechanisms. Water Res. 2022, 219, 118587. https://doi.org/10.1016/J.WATRES.2022.118587spa
dcterms.bibliographicCitationHu, J.; Poelman, H.; Marin, G.B.; Detavernier, C.; Kawi, S.; Galvita, V.V. FeO controls the sintering of iron-based oxygen carriers in chemical looping CO2conversion. J. CO2 Util. 2020, 40, 101216. https://doi.org/10.1016/J.JCOU.2020.101216.spa
dcterms.bibliographicCitationLu, Z.H.; Xu, Q. Intermediates of CO oxidation on iron oxides: An experimental and theoretical study. J. Chem. Phys. 2011, 134, 34305. https://doi.org/10.1063/1.3523648/983327.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. https://doi.org/10.3390/IJMS231911708.spa
dcterms.bibliographicCitationCai, N.; Xia, S.; Li, X.; Sun, L.; Bartocci, P.; Fantozzi, F.; Zhang, H.; Chen, H.; Williams, P.T.; Yang, H. Influence of the ratio of Fe/Al2O3 on waste polypropylene pyrolysis for high value-added products. J. Clean. Prod. 2021, 315, 128240. https://doi.org/10.1016/J.JCLEPRO.2021.128240.spa
dcterms.bibliographicCitationZheng, Y.; Cheng, Y.; Wang, Y.; Bao, F.; Zhou, L.; Wei, X.; Zhang, Y.; Zheng, Q. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance. J. Phys. Chem. B 2006, 110, 3093–3097. https://doi.org/10.1021/JP056617Q.spa
dcterms.bibliographicCitationAcomb, J.C.; Wu, C.; Williams, P.T. Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. J. Anal. Appl. Pyrolysis 2015, 113, 231–238. https://doi.org/10.1016/J.JAAP.2015.01.012.spa
dcterms.bibliographicCitationWu, C.; Nahil, M.A.; Miskolczi, N.; Huang, J.; Williams, P.T. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environ. Sci. Technol. 2014, 48, 819–826. https://doi.org/10.1021/ES402488B.spa
dcterms.bibliographicCitationChen, X.; Liu, Z.; Chen, W.; Yang, H.; Chen, H. Catalytic pyrolysis of cotton stalk to produce aromatic hydrocarbons over Fe modified CaO catalysts and ZSM-5. J. Anal. Appl. Pyrolysis 2022, 166, 105635. https://doi.org/10.1016/J.JAAP.2022.105635.spa
dcterms.bibliographicCitationCho, D.W.; Chon, C.-M.; Yim, G.-J.; Ryu, J.; Jo, H.; Kim, S.-J.; Jang, J.-Y.; Song, H. Adsorption of potentially harmful elements by metal-biochar prepared via Co-pyrolysis of coffee grounds and Nano Fe(III) oxides. Chemosphere 2023, 319, 136536. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136536.spa
dcterms.bibliographicCitationDeng, J.; Deng, X.; Yuan, S.; Ma, D.; Liu, J.; Xie, X.; He, R.; Yang, T. Effect of precipitating agents for the preparation of Fe-based catalysts on coal pyrolysis: Effect of Ba and Mg additives. Fuel 2022, 320, 124000. https://doi.org/10.1016/J.FUEL.2022.124000.spa
dcterms.bibliographicCitationGe, L.; Zhao, C.; Zuo, M.; Du, Y.; Tang, J.; Chu, H.; Wang, Y.; Xu, C. Effects of Fe addition on pyrolysis characteristics of lignin, cellulose and hemicellulose. J. Energy Inst. 2023, 107, 101177. https://doi.org/10.1016/J.JOEI.2023.101177.spa
dcterms.bibliographicCitationDong, Y.; Tian, B.; Guo, F.; Du, S.; Zhan, Y.; Zhou, H.; Qian, L. Application of low-cost Fe-based catalysts in the microwaveassisted pyrolysis of macroalgae and lignocellulosic biomass for the upgradation of bio-oil. Fuel 2021, 300, 120944. https://doi.org/10.1016/J.FUEL.2021.120944.spa
dcterms.bibliographicCitationHe, R.; Liu, H.; Lu, Q.; Zhao, Y.; Wang, X.; Xie, X.; Deng, X.; Yuan, S. Effects of Si and Al elements in coal on Fe-catalyzed brown coal pyrolysis. Fuel 2022, 315, 123170. https://doi.org/10.1016/J.FUEL.2022.123170.spa
dcterms.bibliographicCitationYao, D.; Wu, C.; Yang, H.; Zhang, Y.; Nahil, M.A.; Chen, Y.; Williams, P.T.; Chen, H. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst. Energy Convers. Manag. 2017, 148, 692–700. https://doi.org/10.1016/J.ENCONMAN.2017.06.012spa
dcterms.bibliographicCitationAboul-Enein, A.A.; Awadallah, A.E. Production of nanostructured carbon materials using Fe–Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste. Chem. Eng. J. 2018, 354, 802–816. https://doi.org/10.1016/J.CEJ.2018.08.046spa
dcterms.bibliographicCitationTezel, E.; Figen, H.E.; Baykara, S.Z. Hydrogen production by methane decomposition using bimetallic Ni–Fe catalysts. Int. J. Hydrogen Energy 2019, 44, 9930–9940. https://doi.org/10.1016/J.IJHYDENE.2018.12.151.spa
dcterms.bibliographicCitationKwon, G.; Cho, D.W.; Kwon, E.E.; Rinklebe, J.; Wang, H.; Song, H. Beneficial use of Fe-impregnated bentonite as a catalyst for pyrolysis of grass cut into syngas, bio-oil and biochar. Chem. Eng. J. 2022, 448, 137502. https://doi.org/10.1016/J.CEJ.2022.137502.spa
dcterms.bibliographicCitationLiu, R.; Li, C.; Zheng, J.; Liao, L.; Zhang, Y. Effect of Fe impregnation on CO2-assisted pyrolysis of hazelnut shell. Fuel 2022, 324, 124514. https://doi.org/10.1016/J.FUEL.2022.124514.spa
dcterms.bibliographicCitationTafjord, J.; Regli, S.K.; Dugulan, A.I.; Rønning, M.; Rytter, E.; Holmen, A.; Myrstad, R.; Yang, J. Influence of temperature during pyrolysis of Fe-alginate: Unraveling the pathway towards highly active Fe/C catalysts. Appl. Catal. A Gen. 2022, 644, 118834. https://doi.org/10.1016/j.apcata.2022.118834.spa
dcterms.bibliographicCitationYuwen, C.; Liu, B.; Rong, Q.; Hou, K.; Zhang, L.; Guo, S. Mechanism of microwave-assisted iron-based catalyst pyrolysis of discarded COVID-19 masks. Waste Manag. 2023, 155, 77–86. https://doi.org/10.1016/J.WASMAN.2022.10.041.spa
dcterms.bibliographicCitationWang, H.; Zhang, B.; Luo, P.; Huang, K.; Zhou, Y. Simultaneous Achievement of High-Yield Hydrogen and High-Performance Microwave Absorption Materials from Microwave Catalytic Deconstruction of Plastic Waste. Processes 2022, 10, 782. https://doi.org/10.3390/PR10040782.spa
dcterms.bibliographicCitationJie, X.; Li, W.; Slocombe, D.; Gao, Y.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B.; AlMegren, H.; Alshihri, S.; Dilworth, J.; et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat. Catal. 2020, 3, 902– 912. https://doi.org/10.1038/S41929-020-00518-5.spa
dcterms.bibliographicCitationÁlvarez, M.L.; Gascó, G.; Palacios, T.; Paz-Ferreiro, J.; Méndez, A. Fe oxides-biochar composites produced by hydrothermal carbonization and pyrolysis of biomass waste. J. Anal. Appl. Pyrolysis 2020, 151, 104893. https://doi.org/10.1016/J.JAAP.2020.104893.spa
dcterms.bibliographicCitationDas, P.; Tiwari, P. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Manag. 2018, 79, 615–624. https://doi.org/10.1016/J.WASMAN.2018.08.021.spa
dcterms.bibliographicCitationSobko, A.A. Generalized van der Waals-Berthelot equation of state. Dokl. Phys. 2008, 53, 416. https://doi.org/10.1134/S1028335808080028.spa
dcterms.bibliographicCitationSapuan, S.M.; Jamal, T.; Abdan, K. Slow Pyrolysis of Disinfected COVID-19 Non-Woven Polypropylene (PP) Waste. 2021. Available online: https://www.researchgate.net/publication/351710043 (accessed on 31 May 2024).spa
dcterms.bibliographicCitationMarcilla, A.; García-Quesada, J.C.; Sánchez, S.; Ruiz, R. Study of the catalytic pyrolysis behaviour of polyethylene–polypropylene mixtures. J. Anal. Appl. Pyrolysis 2005, 74, 387–392. https://doi.org/10.1016/J.JAAP.2004.10.005.spa
dcterms.bibliographicCitationJung, S.H.; Cho, M.H.; Kang, B.S.; Kim, J.S. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process. Technol. 2010, 91, 277–284. https://doi.org/10.1016/J.FUPROC. 2009.10.009.spa
dcterms.bibliographicCitationPanda, A.K.; Singh, R.K.; Mishra, D.K. Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew. Sustain. Energy Rev. 2010, 14, 233–248. https://doi.org/10.1016/J.RSER.2009.07.005.spa
dcterms.bibliographicCitationAhmad, I.; Khan, M.I.; Khan, H.; Ishaq, M.; Tariq, R.; Gul, K.; Ahmad, W. Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products. Int. J. Green Energy 2015, 12, 663–671. https://doi.org/10.1080/15435075.2014.880146.spa
dcterms.bibliographicCitationAguado, J.; Serrano, D.P.; Escola, J.M.; Garagorri, E.; Fernández, J.A. Catalytic conversion of polyolefins into fuels over zeolite beta. Polym. Degrad. Stab. 2000, 69, 11–16. https://doi.org/10.1016/S0141-3910(00)00023-9.spa
dcterms.bibliographicCitationLi, M.; Endo, R.; Akoshima, M.; Susa, M. Temperature Dependence of Thermal Diffusivity and Conductivity of FeO Scale Produced on Iron by Thermal Oxidation. ISIJ Int. 2017, 57, 2097–2106. https://doi.org/10.2355/isijinternational.ISIJINT-2017-301.spa
dcterms.bibliographicCitationNakatani, H.; Shibata, H.; Miyazaki, K.; Yonezawa, T.; Takeda, H.; Azuma, Y.; Watanabe, S. Studies on heterogeneous degradation of polypropylene/talc composite: Effect of iron impurity on the degradation behavior. J. Appl. Polym. Sci. 2010, 115, 167– 173. https://doi.org/10.1002/APP.31010.spa
dcterms.bibliographicCitationMowery, D.M.; Assink, R.A.; Derzon, D.K.; Klamo, S.B.; Clough, R.L.; Bernstein, R. Solid-state 13C NMR investigation of the oxidative degradation of selectively labeled polypropylene by thermal aging and γ-irradiation. Macromolecules 2005, 38, 5035– 5046. https://doi.org/10.1021/MA047381B.spa
dcterms.bibliographicCitationCarlsson, D.J.; Wiles, D.M. The Photooxidative Degradation of Polypropylene. Part I. Photooxidation and Photoinitiation Processes. J. Macromol. Sci. Part C Polym. Rev. 1976, 14, 65–106. https://doi.org/10.1080/15321797608076113spa
dcterms.bibliographicCitationBahri-Laleh, N.; Correa, A.; Mehdipour-Ataei, S.; Arabi, H.; Haghighi, M.N.; Zohuri, G.; Cavallo, L. Moving up and down the titanium oxidation state in Ziegler-Natta catalysis. Macromolecules 2011, 44, 778–783. https://doi.org/10.1021/MA1023582.spa
dcterms.bibliographicCitationLee, H.W.; Park, Y.K. Catalytic Pyrolysis of Polyethylene and Polypropylene over Desilicated Beta and Al-MSU-F. Catalysts 2018, 8, 501. https://doi.org/10.3390/CATAL8110501.spa
dcterms.bibliographicCitationPapuga, S.; Djurdjevic, M.; Ciccioli, A.; Ciprioti, S.V. Catalytic Pyrolysis of Plastic Waste and Molecular Symmetry Effects: A Review. Symmetry 2023, 15, 38. https://doi.org/10.3390/SYM15010038.spa
dcterms.bibliographicCitationClough, R.L. Isotopic exchange in gamma-irradiated mixtures of C24H5 and C24D5: Evidence of free radical migration in the solid state. J. Chem. Phys. 1987, 87, 1588–1595. https://doi.org/10.1063/1.453218.spa
dcterms.bibliographicCitationCommereuc, S.; Vaillant, D.; Philippart, J.L.; Lacoste, J.; Lemaire, J.; Carlsson, D.J. Photo and thermal decomposition of iPP hydroperoxides. Polym. Degrad. Stab. 1997, 57, 175–182. https://doi.org/10.1016/S0141-3910(96)00183-8.spa
dcterms.bibliographicCitationSuriapparao, D.V.; Gautam, R.; Jeeru, L.R. Analysis of pyrolysis index and reaction mechanism in microwave-assisted ex-situ catalytic co-pyrolysis of agro-residual and plastic wastes. Bioresour. Technol. 2022, 357, 127357. https://doi.org/10.1016/J.BIORTECH. 2022.127357.spa
dcterms.bibliographicCitationZhang, Y.; Fu, Z.; Wang, W.; Ji, G.; Zhao, M.; Li, A. Kinetics, Product Evolution, and Mechanism for the Pyrolysis of Typical Plastic Waste. ACS Sustain. Chem. Eng. 2022, 10, 91–103. https://doi.org/10.1021/ACSSUSCHEMENG.1C04915.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833.spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; Hernández-Fernández, J.; López-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2021, 139, 51734.spa
dcterms.bibliographicCitationHernandez-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808spa
dcterms.bibliographicCitationChacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753.spa
dcterms.bibliographicCitationHernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per million of propanol and arsine as responsible for the poisoning of the propylene polymerization reaction. Polymers 2023, 15, 3619. https://doi.org/10.3390/POLYM15173619.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–experimental study of the action of trace amounts of formaldehyde, propionaldehyde, and butyraldehyde as inhibitors of the ziegler–natta catalyst and the synthesis of an ethylene– propylene copolymer. Polymers 2023, 15, 1098. https://doi.org/10.3390/POLYM15051098.spa
dcterms.bibliographicCitationHernandez-Fernandez, J.; Cano, H.; Guerra, Y. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. https://doi.org/10.3390/molecules27154832.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/ su16145934
dc.subject.keywordsCovid-19spa
dc.subject.keywordsHospital plastic of polypropylene wastespa
dc.subject.keywordsPyrolysisspa
dc.subject.keywordsSustainable catalystspa
dc.subject.keywordsOxide ironspa
dc.subject.keywordsGC-MSspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.