Mostrar el registro sencillo del ítem

dc.contributor.authorPrada, Angelica M.
dc.contributor.authorQuintero, Fernando
dc.contributor.authorMendoza, Kevin
dc.contributor.authorGalvis, Virgilio
dc.contributor.authorTello, Alejandro
dc.contributor.authorRomero, Lenny A
dc.contributor.authorMarrugo, Andres G.
dc.date.accessioned2024-08-12T13:21:34Z
dc.date.available2024-08-12T13:21:34Z
dc.date.issued2024-09-09
dc.date.submitted2024-08-12
dc.identifier.citationPrada, A. M., Quintero, F., Mendoza, K., Galvis, V., Tello, A., Romero, L. A., & Marrugo, A. G. (2024). Assessing Fuchs corneal endothelial dystrophy using Artificial Intelligence–Derived morphometric parameters from specular microscopy images. Cornea. https://doi.org/10.1097/ico.0000000000003460spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12706
dc.description.abstractPurpose: The aim of this study was to evaluate the efficacy of artificial intelligence–derived morphometric parameters in characterizing Fuchs corneal endothelial dystrophy (FECD) from specular microscopy images. Methods: This cross-sectional study recruited patients diagnosed with FECD, who underwent ophthalmologic evaluations, including slit-lamp examinations and corneal endothelial assessments using specular microscopy. The modified Krachmer grading scale was used for clinical FECD classification. The images were processed using a convolutional neural network for segmentation and morphometric parameter estimation, including effective endothelial cell density, guttae area ratio, coefficient of variation of size, and hexagonality. A mixed-effects model was used to assess relationships between the FECD clinical classification and measured parameters. Results: Of 52 patients (104 eyes) recruited, 76 eyes were analyzed because of the exclusion of 26 eyes for poor quality retroillumination photographs. The study revealed significant discrepancies between artificial intelligence–based and built-in microscope software cell density measurements (1322 ± 489 cells/mm2 vs. 2216 ± 509 cells/mm2, P < 0.001). In the central region, guttae area ratio showed the strongest correlation with modified Krachmer grades (0.60, P < 0.001). In peripheral areas, only guttae area ratio in the inferior region exhibited a marginally significant positive correlation (0.29, P < 0.05). Conclusions: This study confirms the utility of CNNs for precise FECD evaluation through specular microscopy. Guttae area ratio emerges as a compelling morphometric parameter aligning closely with modified Krachmer clinical grading. These findings set the stage for future large-scale studies, with potential applications in the assessment of irreversible corneal edema risk after phacoemulsification in FECD patients, as well as in monitoring novel FECD therapies.spa
dc.format.extent8 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCorneaspa
dc.titleAssessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Imagesspa
dcterms.bibliographicCitationMatthaei M, Hribek A, Clahsen T, et al. Fuchs endothelial corneal dystrophy: clinical, genetic, pathophysiologic, and therapeutic aspects. Annu Rev Vis Sci. 2019;5:151–175.spa
dcterms.bibliographicCitationAli M, Cho K, Srikumaran D. Fuchs dystrophy and cataract: diagnosis, evaluation and treatment. Ophthalmol Ther. 2023;12:691–704.spa
dcterms.bibliographicCitationMargo CE, Espana EM. Corneal endothelial dystrophy. In: Margo CE, Cheng JY, Espana EM, et al., eds. Ophthalmic Pathology: The Evolution of Current Concepts. Cambridge, MA: Academic Press, 2023:147–151.spa
dcterms.bibliographicCitationGalvis V, Tello A, Laiton AN, et al. Indications and techniques of corneal transplantation in a referral center in Colombia, South America (2012–2016). Int Ophthalmol. 2019;39:1723–1733.spa
dcterms.bibliographicCitationZhang J, Patel DV. The pathophysiology of Fuchs' endothelial dystrophy—a review of molecular and cellular insights. Exp Eye Res. 2015;130:97–105.spa
dcterms.bibliographicCitationRodrigues MM, Krachmer JH, Hackett J, et al. . Fuchs' corneal dystrophy: a clinicopathologic study of the variation in corneal edema. Ophthalmology. 1986;93:789–796.spa
dcterms.bibliographicCitationHribek A, Clahsen T, Horstmann J, et al. . Fibrillar layer as a marker for areas of pronounced corneal endothelial cell loss in advanced Fuchs endothelial corneal dystrophy. Am J Ophthalmol. 2021;222:292–301spa
dcterms.bibliographicCitationSchrems-Hoesl L, Schrems W, Cruzat A, et al. . Cellular and subbasal nerve alterations in early stage Fuchs' endothelial corneal dystrophy: an in vivo confocal microscopy study. Eye. 2013;27:42–49.spa
dcterms.bibliographicCitationPatel SV, Hodge DO, Treichel EJ, et al. . Visual function in pseudophakic eyes with Fuchs' endothelial corneal dystrophy. Am J Ophthalmol. 2022;239:98–107spa
dcterms.bibliographicCitationMishima S. Clinical investigations on the corneal endothelium: XXXVIII Edward Jackson Memorial Lecture. Am J Ophthalmol. 1982;93:1–29.spa
dcterms.bibliographicCitationCornea Donor Study Investigator Group, Gal RL, Dontchev M, et al. . The effect of donor age on corneal transplantation outcome: results of the cornea donor study. Ophthalmology. 2008;115:620–626.e6spa
dcterms.bibliographicCitationHoffer KJ. Corneal decomposition after corneal endothelium cell count. Am J Ophthalmol. 1979;87:252–253.spa
dcterms.bibliographicCitationKocaba V, Katikireddy KR, Gipson I, et al. . Association of the gutta-induced microenvironment with corneal endothelial cell behavior and demise in Fuchs endothelial corneal dystrophy. JAMA Ophthalmol. 2018;136:886–892.spa
dcterms.bibliographicCitationKrachmer JH, Purcell JJ, Young CW, et al. . Corneal endothelial dystrophy: a study of 64 families. Arch Ophthalmol. 1978;96:2036–2039.spa
dcterms.bibliographicCitationLouttit MD, Kopplin LJ, Igo RP, et al. . A multicenter study to map genes for Fuchs endothelial corneal dystrophy: baseline characteristics and heritability. Cornea. 2012;31:26–35.spa
dcterms.bibliographicCitationRepp DJ, Hodge DO, Baratz KH, et al. . Fuchs' endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio. Ophthalmology. 2013;120:687–694.spa
dcterms.bibliographicCitationMingo-Botín D, Arnalich-Montiel F, Couceiro de Juan A, et al. . Repeatability and intersession reproducibility of pentacam corneal thickness maps in Fuchs dystrophy and endothelial keratoplasty. Cornea. 2018;37:987–992.spa
dcterms.bibliographicCitationPatel SV, Hodge DO, Treichel EJ, et al. . Predicting the prognosis of Fuchs endothelial corneal dystrophy by using Scheimpflug tomography. Ophthalmology. 2020;127:315–323spa
dcterms.bibliographicCitationSun SY, Wacker K, Baratz KH, et al. . Determining subclinical edema in Fuchs endothelial corneal dystrophy: revised classification using Scheimpflug tomography for preoperative assessment. Ophthalmology. 2019;126:195–204spa
dcterms.bibliographicCitationYasukura Y, Oie Y, Kawasaki R, et al. . New severity grading system for Fuchs endothelial corneal dystrophy using anterior segment optical coherence tomography. Acta Ophthalmol. 2021;99:e914–e921.spa
dcterms.bibliographicCitationAggarwal S, Cavalcanti BM, Regali L, et al. . In vivo confocal microscopy shows alterations in nerve density and dendritiform cell density in Fuchs' endothelial corneal dystrophy. Am J Ophthalmol. 2018;196:136–144.spa
dcterms.bibliographicCitationOng Tone S, Bruha MJ, Böhm M, et al. . Regional variability in corneal endothelial cell density between guttae and non-guttae areas in Fuchs endothelial corneal dystrophy. Can J Ophthalmol. 2019;54:570–576spa
dcterms.bibliographicCitationLi Z, Wang L, Wu X, et al. . Artificial intelligence in ophthalmology: the path to the real-world clinic. Cell Rep Med. 2023;4:101095.spa
dcterms.bibliographicCitationSierra JS, Pineda J, Rueda D, et al. . Corneal endothelium assessment in specular microscopy images with Fuchs' dystrophy via deep regression of signed distance maps. Biomed Opt Express. 2023;14:335–351spa
dcterms.bibliographicCitationMcLaren JW, Bachman LA, Kane KM, et al. . Objective assessment of the corneal endothelium in Fuchs' endothelial dystrophy. Invest Ophthalmol Vis Sci. 2014;55:1184–1190spa
dcterms.bibliographicCitationFujimoto H, Maeda N, Soma T, et al. . Quantitative regional differences in corneal endothelial abnormalities in the central and peripheral zones in Fuchs' endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2014;55:5090–5098spa
dcterms.bibliographicCitationEghrari AO, Garrett BS, Mumtaz AA, et al. . Retroillumination photography analysis enhances clinical definition of severe Fuchs corneal dystrophy. Cornea. 2015;34:1623–1626.spa
dcterms.bibliographicCitationEghrari AO, Mumtaz AA, Garrett B, et al. . Automated retroillumination photography analysis for objective assessment of Fuchs corneal dystrophy. Cornea. 2017;36:44–47.spa
dcterms.bibliographicCitationHamlett A, Ryan L, Serrano-Trespalacios P, et al. . Mixed models for assessing correlation in the presence of replication. J Air Waste Manag Assoc. 2003;53:442–450.spa
dcterms.bibliographicCitationYing G, Maguire MG, Glynn R, et al. . Tutorial on biostatistics: statistical analysis for correlated binary eye data. Ophthalmic Epidemiol. 2018;25:1–12.spa
dcterms.bibliographicCitationSyed ZA, Tran JA, Jurkunas UV. Peripheral endothelial cell count is a predictor of disease severity in advanced Fuchs' endothelial corneal dystrophy. Cornea. 2017;36:1166–1171.spa
dcterms.bibliographicCitationSierra J, Pineda J, Volpe G, et al. . Code for corneal endothelium assessment in specular microscopy images with Fuchs' dystrophy via deep regression of signed distance maps. GitHub; 2022. Available at: 10.5281/zenodo.7378507.spa
dcterms.bibliographicCitationHemaya M, Hemaya M, Habeeb A. Evaluating keratoplasty for Fuchs' endothelial corneal dystrophy: a literature review. Cureus. 2023;15:e33639.spa
dcterms.bibliographicCitationLi Z, Duan H, Jia Y, et al. . Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Invest. 2022;132:e146658.spa
dcterms.bibliographicCitationYuan A, Pineda R. Regenerative medicine in Fuchs' endothelial corneal dystrophy. Taiwan J Ophthalmol. 2021;11:122–131spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1097/ICO.0000000000003460
dc.subject.keywordsFuchs dystrophyspa
dc.subject.keywordsSpecular microscopyspa
dc.subject.keywordsEndothelial cell densityspa
dc.subject.keywordsArtificial intelligence,spa
dc.subject.keywordsDeep learningspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.