Mostrar el registro sencillo del ítem
Predicting sunspot number from topological features in spectral images I: Machine learning approach
dc.contributor.author | Sierra Porta, David | |
dc.contributor.author | Tarazona Alvarado, Miguel | |
dc.contributor.author | Herrera Acevedo, Daniel | |
dc.date.accessioned | 2024-07-29T16:52:06Z | |
dc.date.available | 2024-07-29T16:52:06Z | |
dc.date.issued | 2024-07-19 | |
dc.date.submitted | 2024-07-29 | |
dc.identifier.citation | Sierra-Porta, D., Tarazona-Alvarado, M., & Acevedo, D. H. (2024). Predicting sunspot number from topological features in spectral images I: Machine learning approach. Astronomy and Computing, 100857. https://doi.org/10.1016/j.ascom.2024.100857 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12701 | |
dc.description.abstract | This study presents an advanced machine learning approach to predict the number of sunspots using a comprehensive dataset derived from solar images provided by the Solar and Heliospheric Observatory (SOHO). The dataset encompasses various spectral bands, capturing the complex dynamics of solar activity and facilitating interdisciplinary analyses with other solar phenomena. We employed five machine learning models: Random Forest Regressor, Gradient Boosting Regressor, Extra Trees Regressor, Ada Boost Regressor, and Hist Gradient Boosting Regressor, to predict sunspot numbers. These models utilized four key heliospheric variables — Proton Density, Temperature, Bulk Flow Speed and Interplanetary Magnetic Field (IMF) — alongside 14 newly introduced topological variables. These topological features were extracted from solar images using different filters, including HMIIGR, HMIMAG, EIT171, EIT195, EIT284, and EIT304. In total, 60 models were constructed, both incorporating and excluding the topological variables. Our analysis reveals that models incorporating the topological variables achieved significantly higher accuracy, with the r2-score improving from approximately 0.30 to 0.93 on average. The Extra Trees Regressor (ET) emerged as the best-performing model, demonstrating superior predictive capabilities across all datasets. These results underscore the potential of combining machine learning models with additional topological features from spectral analysis, offering deeper insights into the complex dynamics of solar activity and enhancing the precision of sunspot number predictions. This approach provides a novel methodology for improving space weather forecasting and contributes to a more comprehensive understanding of solar-terrestrial interactions. | spa |
dc.format.extent | 10 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Astronomy and Computing | spa |
dc.title | Predicting sunspot number from topological features in spectral images I: Machine learning approach | spa |
dcterms.bibliographicCitation | Aggarwal, A., Kumar, M., 2021. Image surface texture analysis and classification using deep learning. Multimedia Tools Appl. 80 (1), 1289–1309. doi:10.1007/s11042- 020-09520-2 | spa |
dcterms.bibliographicCitation | Alexakis, P., Mavromichalaki, H., 2019. Statistical analysis of interplanetary coronal mass ejections and their geoeffectiveness during the solar cycles 23 and 24. Astrophys. Space Sci. 364 (11), 187. doi:10.1007/s10509-019-3677-y. | spa |
dcterms.bibliographicCitation | Amadasun, M., King, R., 1989. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19 (5), 1264–1274. doi:10.1109/21.44046. | spa |
dcterms.bibliographicCitation | Barentine, J.C., 2022. Night sky brightness measurement, quality assessment and monitoring. Nat. Astron. 6 (10), 1120–1132. doi:10.1038/s41550-022-01756-2. | spa |
dcterms.bibliographicCitation | Benz, A.O., 2017. Flare observations. Living Rev. Solar Phys. 14, 1–59. doi:10.1007/ s41116-016-0004-3. | spa |
dcterms.bibliographicCitation | Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. doi:10.1023/A: 1010933404324. | spa |
dcterms.bibliographicCitation | Burt, J., Smith, B., 2012. Deep space climate observatory: The DSCOVR mission. In: 2012 Ieee Aerospace Conference. IEEE, pp. 1–13. doi:10.1109/AERO.2012. 6187025. | spa |
dcterms.bibliographicCitation | Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794. doi:10.1145/2939672.2939785 | spa |
dcterms.bibliographicCitation | Chollet, F., 2021. Deep learning with Python. Simon and Schuster, ISBN: 9781617294433. | spa |
dcterms.bibliographicCitation | Cliver, E.W., Pötzi, W., Veronig, A.M., 2022. Large sunspot groups and great magnetic storms: magnetic suppression of CMEs. Astrophys. J. 938 (2), 136. doi:10.3847/ 1538-4357/ac847d. | spa |
dcterms.bibliographicCitation | Dang, Y., Chen, Z., Li, H., Shu, H., 2022. A comparative study of non-deep learning, deep learning, and ensemble learning methods for sunspot number prediction. Appl. Artif. Intell. 36 (1), 2074129. doi:10.1080/08839514.2022.2074129. | spa |
dcterms.bibliographicCitation | Dani, T., Sulistiani, S., 2019. Prediction of maximum amplitude of solar cycle 25 using machine learning. In: J. Phys. Conf. Series. 1231, (1), IOP Publishing, 012022. doi:10.1088/1742-6596/1231/1/012022. | spa |
dcterms.bibliographicCitation | De Alwis, T.P., Samadi, S.Y., 2024. Stacking-based neural network for nonlinear time series analysis. Stat. Methods Appl. 1–24. doi:10.1007/s10260-024-00746-0. | spa |
dcterms.bibliographicCitation | Delaboudiniere, J.-P., Artzner, G., Brunaud, J., Gabriel, A.H., Hochedez, J.-F., Millier, F., Song, X., Au, B., Dere, K., Howard, R.A., et al., 1995. EIT: extreme-ultraviolet imaging telescope for the SOHO mission. SOHO Mission 291–312. doi:10.1007/ 978-94-009-0191-9_8 | spa |
dcterms.bibliographicCitation | Drews, A., Huo, W., Matthes, K., Kodera, K., Kruschke, T., 2022. The sun’s role in decadal climate predictability in the north atlantic. Atmos. Chem. Phys. 22 (12), 7893–7904. doi:10.5194/acp-22-7893-2022 | spa |
dcterms.bibliographicCitation | Floyd, L., Tobiska, W.K., Cebula, R.P., 2002. Solar UV irradiance, its variation, and its relevance to the earth. Adv. Space Res. 29 (10), 1427–1440. doi:10.1016/S0273- 1177(02)00202-8. | spa |
dcterms.bibliographicCitation | Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1), 119–139. doi:10.1006/ jcss.1997.1504. | spa |
dcterms.bibliographicCitation | Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Statist. 1189–1232, https://www.jstor.org/stable/2699986. | spa |
dcterms.bibliographicCitation | Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn. 63, 3–42. doi:10.1007/s10994-006-6226-1. | spa |
dcterms.bibliographicCitation | Gour, P.S., Singh, N.P., Soni, S., Saini, S.M., 2021. Observation of coronal mass ejections in association with sun spot number and solar flares. In: IOP Conference Series: Materials Science and Engineering, Vol. 1120, No. 1. IOP Publishing, 012020. doi:10.1088/1757-899X/1120/1/012020. | spa |
dcterms.bibliographicCitation | Grauer, A.D., Grauer, P.A., 2021. Linking solar minimum, space weather, and night sky brightness. Sci. Rep. 11 (1), 23893. doi:10.1038/s41598-021-02365-1. | spa |
dcterms.bibliographicCitation | Guha, R., Velegol, D., 2023. Harnessing Shannon entropy-based descriptors in machine learning models to enhance the prediction accuracy of molecular properties. J. Cheminformat. 15 (1), 54. doi:10.1186/s13321-023-00712-0. | spa |
dcterms.bibliographicCitation | Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R.R., Cheng, M.-M., Hu, S.-M., 2022. Attention mechanisms in computer vision: A survey. Comput. Visual Media 8 (3), 331–368. doi:10.1007/s41095-022- 0271-y. | spa |
dcterms.bibliographicCitation | He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. doi:10.1109/IEEESTD.1997.85951. | spa |
dcterms.bibliographicCitation | Hill, M., Allen, R., Kollmann, P., Brown, L., Decker, R., McNutt, R., Krimigis, S., Andrews, G., Bagenal, F., Clark, G., et al., 2020. Influence of solar disturbances on galactic cosmic rays in the solar wind, heliosheath, and local interstellar medium: Advanced composition explorer, new horizons, and voyager observations. Astrophys. J. 905 (1), 69. doi:10.3847/1538-4357/abb408. | spa |
dcterms.bibliographicCitation | Keller, K., 2019. Entropy measures for data analysis: Theory, algorithms and applications. Entropy 21 (10), 935. doi:10.3390/e23111496 | spa |
dcterms.bibliographicCitation | Khan, T., Arafat, F., Mojumdar, M.U., Rajbongshi, A., Siddiquee, S.M.T., Chakraborty, N.R., 2020. A machine learning approach for predicting the sunspot of solar cycle. In: 2020 11th International Conference on Computing, Communication and Networking Technologies. ICCCNT, IEEE, pp. 1–4. doi:10.1109/ICCCNT49239.2020.9225427. | spa |
dcterms.bibliographicCitation | Kohl, J.L., Esser, R., Gardner, L.D., Habbal, S., Daigneau, P.S., Dennis, E., Nystrom, G., Panasyuk, A., Raymond, J., Smith, P., et al., 1995. The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. SOHO Mission 313–356. doi:10.1007/978-94-009-0191-9_9. | spa |
dcterms.bibliographicCitation | Kozak, J., Juszczuk, P., 2023. Entropy in Real-World Datasets and Its Impact on Machine Learning. MDPI-Multidisciplinary Digital Publishing Institute, doi:10.3390/ books978-3-0365-7849-1 | spa |
dcterms.bibliographicCitation | Le Mouël, J.-L., Lopes, F., Courtillot, V., 2019. A solar signature in many climate indices. J. Geophys. Res.: Atmos. 124 (5), 2600–2619. doi:10.1029/2018JD028939. | spa |
dcterms.bibliographicCitation | Li, Q., Wan, M., Zeng, S.-G., Zheng, S., Deng, L.-H., 2021. Predicting the 25th solar cycle using deep learning methods based on sunspot area data. Res. Astron. Astrophys. 21 (7), 184. doi:10.1088/1674-4527/21/7/184 | spa |
dcterms.bibliographicCitation | Mahdi, M.M., Tipu, M.A.N., Halder, C., Rahman, K.F., 2019. Comparative analysis of prediction of coronal mass ejections (CME) based on sunspot activities using various machine learning models. In: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques. ICREST, IEEE, pp. 588–591. doi: 10.1109/ICREST.2019.8644272. | spa |
dcterms.bibliographicCitation | Marshak, A., Herman, J., Adam, S., Karin, B., Carn, S., Cede, A., Geogdzhayev, I., Huang, D., Huang, L.-K., Knyazikhin, Y., et al., 2018. Earth observations from DSCOVR EPIC instrument. Bull. Am. Meteorol. Soc. 99 (9), 1829–1850. doi:10. 1175/BAMS-D-17-0223.1 | spa |
dcterms.bibliographicCitation | Nandy, D., 2021. Progress in solar cycle predictions: Sunspot cycles 24–25 in perspective: Invited review. Sol. Phys. 296 (3), 54. doi:10.1007/s11207-021-01797- 2. | spa |
dcterms.bibliographicCitation | National Research Council and Division on Engineering and Physical Sciences and Aeronautics and Space Engineering Board and Space Studies Board and Committee on a Decadal Strategy for Solar and Space Physics (Heliophysics), 2013. Solar and space physics: A science for a technological society. National Academies Press, doi:10.17226/13060 | spa |
dcterms.bibliographicCitation | National Research Council and Division on Engineering and Physical Sciences and Space Studies Board and Committee on the Societal and Economic Impacts of Severe Space Weather Events and A Workshop, 2009. Severe space weather events: Understanding societal and economic impacts: A workshop report. National Academies Press, doi:10.17226/12507. | spa |
dcterms.bibliographicCitation | Pala, Z., Atici, R., 2019. Forecasting sunspot time series using deep learning methods. Sol. Phys. 294 (5), 50. doi:10.1007/s11207-019-1434-6. | spa |
dcterms.bibliographicCitation | Prasad, A., Roy, S., Sarkar, A., Panja, S.C., Patra, S.N., 2023. An improved prediction of solar cycle 25 using deep learning based neural network. Sol. Phys. 298 (3), 50. doi:10.1007/s11207-023-02129-2. | spa |
dcterms.bibliographicCitation | Ramezan, C.A., Warner, T.A., Maxwell, A.E., 2019. Evaluation of sampling and cross-validation tuning strategies for regional-scale machine learning classification. Remote Sens. 11 (2), 185. doi:10.3390/rs11020185 | spa |
dcterms.bibliographicCitation | Salem, Y.B., Abdelkrim, M.N., 2020. Texture classification of fabric defects using machine learning. Int. J. Electr. Comput. Eng. 10 (4), 4390. doi:10.11591/ijece. v10i4.pp4390-4399. | spa |
dcterms.bibliographicCitation | Saroughi, M., Mirzania, E., Achite, M., Katipoğlu, O.M., Ehteram, M., 2024. Shannon entropy of performance metrics to choose the best novel hybrid algorithm to predict groundwater level (case study: Tabriz plain, Iran). Environ. Monit. Assess. 196 (3), 1–20. doi:10.1007/s10661-024-12357-z. | spa |
dcterms.bibliographicCitation | Schaffer, C., 1993. Selecting a classification method by cross-validation. Mach. Learn. 13, 135–143. doi:10.1007/BF00993106 | spa |
dcterms.bibliographicCitation | Scherrer, P.H., Schou, J., Bush, R., Kosovichev, A., Bogart, R., Hoeksema, J., Liu, Y., Duvall, T., Zhao, J., Title, A., et al., 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol. Phys. 275, 207–227. doi:10.1007/s11207-011-9834-2 | spa |
dcterms.bibliographicCitation | Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R., Hoeksema, J., Liu, Y., Duvall, T., et al., 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys. 275, 229–259. doi:10.1007/s11207-011- 9842-2. | spa |
dcterms.bibliographicCitation | Sierra Porta, D., Tarazona-Alvarado, M., 2023. Dataset: Sun dynamics from topological features extraction. Mendeley Data, V1, doi:10.17632/5gh3xbvc92.1. | spa |
dcterms.bibliographicCitation | Singh, A., Bhargawa, A., 2020. Ascendancy of solar variability on terrestrial climate: A review. J. Basic Appl. Sci 16, 105–130. doi:10.29169/1927-5129.2020.16.14. | spa |
dcterms.bibliographicCitation | Solomon, S.C., Liu, H.-L., Marsh, D.R., McInerney, J.M., Qian, L., Vitt, F.M., 2019. Whole atmosphere climate change: Dependence on solar activity. J. Geophys. Res. Space Phys. 124 (5), 3799–3809. doi:10.1029/2019JA026678. | spa |
dcterms.bibliographicCitation | Spencer, D.A., Johnson, L., Long, A.C., 2019. Solar sailing technology challenges. Aerosp. Sci. Technol. 93, 105276. doi:10.1016/j.ast.2019.07.009. | spa |
dcterms.bibliographicCitation | Stone, E.C., Frandsen, A., Mewaldt, R., Christian, E., Margolies, D., Ormes, J., Snow, F., 1998. The advanced composition explorer. Space Sci. Rev. 86, 1–22. doi:10.1023/A: 1005082526237. | spa |
dcterms.bibliographicCitation | Tamura, H., Mori, S., Yamawaki, T., 1978. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8 (6), 460–473. doi:10.1109/TSMC.1978. 4309999 | spa |
dcterms.bibliographicCitation | Tarazona-Alvarado, M., Sierra-Porta, D., 2023. Dataset for sun dynamics from topological features. Data Brief 51, 109728. doi:10.1016/j.dib.2023.109728. | spa |
dcterms.bibliographicCitation | Tlatov, A.G., 2022. The shape of sunspots and solar activity cycles. Sol. Phys. 297 (8), 110. doi:10.1007/s11207-022-02045-x. | spa |
dcterms.bibliographicCitation | Tougui, I., Jilbab, A., El Mhamdi, J., 2021. Impact of the choice of cross-validation techniques on the results of machine learning-based diagnostic applications. Healthc. Informat. Res. 27 (3), 189–199. doi:10.4258/hir.2021.27.3.189. | spa |
dcterms.bibliographicCitation | Tsiropoula, G., 2003. Signatures of solar activity variability in meteorological parameters. J. Atmospheric Solar-Terrestrial Phys. 65 (4), 469–482. doi:10.1016/S1364- 6826(02)00295-X. | spa |
dcterms.bibliographicCitation | Wang, J., Wiens, J., Lundberg, S., 2021. Shapley flow: A graphbased approach to interpreting model predictions. In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 721– 729, https://ui.adsabs.harvard.edu/link_gateway/2020arXiv201014592W/ doi:10.48550/arXiv.2010.14592. | spa |
dcterms.bibliographicCitation | Weerts, H.J., Mueller, A.C., Vanschoren, J., 2020. Importance of tuning hyperparameters of machine learning algorithms. doi:10.48550/arXiv.2007.07588, arXiv preprint arXiv:2007.07588. | spa |
dcterms.bibliographicCitation | Wilson, III, L.B., Brosius, A.L., Gopalswamy, N., Nieves-Chinchilla, T., Szabo, A., Hurley, K., Phan, T., Kasper, J.C., Lugaz, N., Richardson, I.G., et al., 2021. A quarter century of wind spacecraft discoveries. Rev. Geophys. doi:10.1029/2020RG000714. | spa |
dcterms.bibliographicCitation | Wu, C.-M., Chen, Y.-C., 1992. Statistical feature matrix for texture analysis. CVGIP, Graph. Models Image Process. 54 (5), 407–419. doi:10.1016/1049-9652(92)90025- S. | spa |
dcterms.bibliographicCitation | Xiao, Z., 2021. A review of machine learning methods applied in sunspot prediction. In: 2021 International Conference on Networking, Communications and Information Technology. NetCIT, IEEE, pp. 158–161. doi:10.1109/NetCIT54147.2021.00039 | spa |
dcterms.bibliographicCitation | Yang, L., Shami, A., 2020. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295–316. doi:10.1016/j. neucom.2020.07.061 | spa |
dcterms.bibliographicCitation | Zhang, J., Temmer, M., Gopalswamy, N., Malandraki, O., Nitta, N.V., Patsourakos, S., Shen, F., Vršnak, B., Wang, Y., Webb, D., et al., 2021. Earth-affecting solar transients: A review of progresses in solar cycle 24. Progr. Earth Planetary Sci. 8, 1–102. doi:10.1186/s40645-021-00426-7. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1016/j.ascom.2024.100857 | |
dc.subject.keywords | Machine learning | spa |
dc.subject.keywords | Sunspots prediction | spa |
dc.subject.keywords | Spectral images | spa |
dc.subject.keywords | Sun’s dynamics | spa |
dc.subject.keywords | Fractal features | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.