Mostrar el registro sencillo del ítem

dc.contributor.authorSierra Porta, David
dc.contributor.authorTarazona Alvarado, Miguel
dc.contributor.authorHerrera Acevedo, Daniel
dc.date.accessioned2024-07-29T16:52:06Z
dc.date.available2024-07-29T16:52:06Z
dc.date.issued2024-07-19
dc.date.submitted2024-07-29
dc.identifier.citationSierra-Porta, D., Tarazona-Alvarado, M., & Acevedo, D. H. (2024). Predicting sunspot number from topological features in spectral images I: Machine learning approach. Astronomy and Computing, 100857. https://doi.org/10.1016/j.ascom.2024.100857spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12701
dc.description.abstractThis study presents an advanced machine learning approach to predict the number of sunspots using a comprehensive dataset derived from solar images provided by the Solar and Heliospheric Observatory (SOHO). The dataset encompasses various spectral bands, capturing the complex dynamics of solar activity and facilitating interdisciplinary analyses with other solar phenomena. We employed five machine learning models: Random Forest Regressor, Gradient Boosting Regressor, Extra Trees Regressor, Ada Boost Regressor, and Hist Gradient Boosting Regressor, to predict sunspot numbers. These models utilized four key heliospheric variables — Proton Density, Temperature, Bulk Flow Speed and Interplanetary Magnetic Field (IMF) — alongside 14 newly introduced topological variables. These topological features were extracted from solar images using different filters, including HMIIGR, HMIMAG, EIT171, EIT195, EIT284, and EIT304. In total, 60 models were constructed, both incorporating and excluding the topological variables. Our analysis reveals that models incorporating the topological variables achieved significantly higher accuracy, with the r2-score improving from approximately 0.30 to 0.93 on average. The Extra Trees Regressor (ET) emerged as the best-performing model, demonstrating superior predictive capabilities across all datasets. These results underscore the potential of combining machine learning models with additional topological features from spectral analysis, offering deeper insights into the complex dynamics of solar activity and enhancing the precision of sunspot number predictions. This approach provides a novel methodology for improving space weather forecasting and contributes to a more comprehensive understanding of solar-terrestrial interactions.spa
dc.format.extent10 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceAstronomy and Computingspa
dc.titlePredicting sunspot number from topological features in spectral images I: Machine learning approachspa
dcterms.bibliographicCitationAggarwal, A., Kumar, M., 2021. Image surface texture analysis and classification using deep learning. Multimedia Tools Appl. 80 (1), 1289–1309. doi:10.1007/s11042- 020-09520-2spa
dcterms.bibliographicCitationAlexakis, P., Mavromichalaki, H., 2019. Statistical analysis of interplanetary coronal mass ejections and their geoeffectiveness during the solar cycles 23 and 24. Astrophys. Space Sci. 364 (11), 187. doi:10.1007/s10509-019-3677-y.spa
dcterms.bibliographicCitationAmadasun, M., King, R., 1989. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19 (5), 1264–1274. doi:10.1109/21.44046.spa
dcterms.bibliographicCitationBarentine, J.C., 2022. Night sky brightness measurement, quality assessment and monitoring. Nat. Astron. 6 (10), 1120–1132. doi:10.1038/s41550-022-01756-2.spa
dcterms.bibliographicCitationBenz, A.O., 2017. Flare observations. Living Rev. Solar Phys. 14, 1–59. doi:10.1007/ s41116-016-0004-3.spa
dcterms.bibliographicCitationBreiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. doi:10.1023/A: 1010933404324.spa
dcterms.bibliographicCitationBurt, J., Smith, B., 2012. Deep space climate observatory: The DSCOVR mission. In: 2012 Ieee Aerospace Conference. IEEE, pp. 1–13. doi:10.1109/AERO.2012. 6187025.spa
dcterms.bibliographicCitationChen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794. doi:10.1145/2939672.2939785spa
dcterms.bibliographicCitationChollet, F., 2021. Deep learning with Python. Simon and Schuster, ISBN: 9781617294433.spa
dcterms.bibliographicCitationCliver, E.W., Pötzi, W., Veronig, A.M., 2022. Large sunspot groups and great magnetic storms: magnetic suppression of CMEs. Astrophys. J. 938 (2), 136. doi:10.3847/ 1538-4357/ac847d.spa
dcterms.bibliographicCitationDang, Y., Chen, Z., Li, H., Shu, H., 2022. A comparative study of non-deep learning, deep learning, and ensemble learning methods for sunspot number prediction. Appl. Artif. Intell. 36 (1), 2074129. doi:10.1080/08839514.2022.2074129.spa
dcterms.bibliographicCitationDani, T., Sulistiani, S., 2019. Prediction of maximum amplitude of solar cycle 25 using machine learning. In: J. Phys. Conf. Series. 1231, (1), IOP Publishing, 012022. doi:10.1088/1742-6596/1231/1/012022.spa
dcterms.bibliographicCitationDe Alwis, T.P., Samadi, S.Y., 2024. Stacking-based neural network for nonlinear time series analysis. Stat. Methods Appl. 1–24. doi:10.1007/s10260-024-00746-0.spa
dcterms.bibliographicCitationDelaboudiniere, J.-P., Artzner, G., Brunaud, J., Gabriel, A.H., Hochedez, J.-F., Millier, F., Song, X., Au, B., Dere, K., Howard, R.A., et al., 1995. EIT: extreme-ultraviolet imaging telescope for the SOHO mission. SOHO Mission 291–312. doi:10.1007/ 978-94-009-0191-9_8spa
dcterms.bibliographicCitationDrews, A., Huo, W., Matthes, K., Kodera, K., Kruschke, T., 2022. The sun’s role in decadal climate predictability in the north atlantic. Atmos. Chem. Phys. 22 (12), 7893–7904. doi:10.5194/acp-22-7893-2022spa
dcterms.bibliographicCitationFloyd, L., Tobiska, W.K., Cebula, R.P., 2002. Solar UV irradiance, its variation, and its relevance to the earth. Adv. Space Res. 29 (10), 1427–1440. doi:10.1016/S0273- 1177(02)00202-8.spa
dcterms.bibliographicCitationFreund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1), 119–139. doi:10.1006/ jcss.1997.1504.spa
dcterms.bibliographicCitationFriedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Statist. 1189–1232, https://www.jstor.org/stable/2699986.spa
dcterms.bibliographicCitationGeurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn. 63, 3–42. doi:10.1007/s10994-006-6226-1.spa
dcterms.bibliographicCitationGour, P.S., Singh, N.P., Soni, S., Saini, S.M., 2021. Observation of coronal mass ejections in association with sun spot number and solar flares. In: IOP Conference Series: Materials Science and Engineering, Vol. 1120, No. 1. IOP Publishing, 012020. doi:10.1088/1757-899X/1120/1/012020.spa
dcterms.bibliographicCitationGrauer, A.D., Grauer, P.A., 2021. Linking solar minimum, space weather, and night sky brightness. Sci. Rep. 11 (1), 23893. doi:10.1038/s41598-021-02365-1.spa
dcterms.bibliographicCitationGuha, R., Velegol, D., 2023. Harnessing Shannon entropy-based descriptors in machine learning models to enhance the prediction accuracy of molecular properties. J. Cheminformat. 15 (1), 54. doi:10.1186/s13321-023-00712-0.spa
dcterms.bibliographicCitationGuo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R.R., Cheng, M.-M., Hu, S.-M., 2022. Attention mechanisms in computer vision: A survey. Comput. Visual Media 8 (3), 331–368. doi:10.1007/s41095-022- 0271-y.spa
dcterms.bibliographicCitationHe, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. doi:10.1109/IEEESTD.1997.85951.spa
dcterms.bibliographicCitationHill, M., Allen, R., Kollmann, P., Brown, L., Decker, R., McNutt, R., Krimigis, S., Andrews, G., Bagenal, F., Clark, G., et al., 2020. Influence of solar disturbances on galactic cosmic rays in the solar wind, heliosheath, and local interstellar medium: Advanced composition explorer, new horizons, and voyager observations. Astrophys. J. 905 (1), 69. doi:10.3847/1538-4357/abb408.spa
dcterms.bibliographicCitationKeller, K., 2019. Entropy measures for data analysis: Theory, algorithms and applications. Entropy 21 (10), 935. doi:10.3390/e23111496spa
dcterms.bibliographicCitationKhan, T., Arafat, F., Mojumdar, M.U., Rajbongshi, A., Siddiquee, S.M.T., Chakraborty, N.R., 2020. A machine learning approach for predicting the sunspot of solar cycle. In: 2020 11th International Conference on Computing, Communication and Networking Technologies. ICCCNT, IEEE, pp. 1–4. doi:10.1109/ICCCNT49239.2020.9225427.spa
dcterms.bibliographicCitationKohl, J.L., Esser, R., Gardner, L.D., Habbal, S., Daigneau, P.S., Dennis, E., Nystrom, G., Panasyuk, A., Raymond, J., Smith, P., et al., 1995. The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. SOHO Mission 313–356. doi:10.1007/978-94-009-0191-9_9.spa
dcterms.bibliographicCitationKozak, J., Juszczuk, P., 2023. Entropy in Real-World Datasets and Its Impact on Machine Learning. MDPI-Multidisciplinary Digital Publishing Institute, doi:10.3390/ books978-3-0365-7849-1spa
dcterms.bibliographicCitationLe Mouël, J.-L., Lopes, F., Courtillot, V., 2019. A solar signature in many climate indices. J. Geophys. Res.: Atmos. 124 (5), 2600–2619. doi:10.1029/2018JD028939.spa
dcterms.bibliographicCitationLi, Q., Wan, M., Zeng, S.-G., Zheng, S., Deng, L.-H., 2021. Predicting the 25th solar cycle using deep learning methods based on sunspot area data. Res. Astron. Astrophys. 21 (7), 184. doi:10.1088/1674-4527/21/7/184spa
dcterms.bibliographicCitationMahdi, M.M., Tipu, M.A.N., Halder, C., Rahman, K.F., 2019. Comparative analysis of prediction of coronal mass ejections (CME) based on sunspot activities using various machine learning models. In: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques. ICREST, IEEE, pp. 588–591. doi: 10.1109/ICREST.2019.8644272.spa
dcterms.bibliographicCitationMarshak, A., Herman, J., Adam, S., Karin, B., Carn, S., Cede, A., Geogdzhayev, I., Huang, D., Huang, L.-K., Knyazikhin, Y., et al., 2018. Earth observations from DSCOVR EPIC instrument. Bull. Am. Meteorol. Soc. 99 (9), 1829–1850. doi:10. 1175/BAMS-D-17-0223.1spa
dcterms.bibliographicCitationNandy, D., 2021. Progress in solar cycle predictions: Sunspot cycles 24–25 in perspective: Invited review. Sol. Phys. 296 (3), 54. doi:10.1007/s11207-021-01797- 2.spa
dcterms.bibliographicCitationNational Research Council and Division on Engineering and Physical Sciences and Aeronautics and Space Engineering Board and Space Studies Board and Committee on a Decadal Strategy for Solar and Space Physics (Heliophysics), 2013. Solar and space physics: A science for a technological society. National Academies Press, doi:10.17226/13060spa
dcterms.bibliographicCitationNational Research Council and Division on Engineering and Physical Sciences and Space Studies Board and Committee on the Societal and Economic Impacts of Severe Space Weather Events and A Workshop, 2009. Severe space weather events: Understanding societal and economic impacts: A workshop report. National Academies Press, doi:10.17226/12507.spa
dcterms.bibliographicCitationPala, Z., Atici, R., 2019. Forecasting sunspot time series using deep learning methods. Sol. Phys. 294 (5), 50. doi:10.1007/s11207-019-1434-6.spa
dcterms.bibliographicCitationPrasad, A., Roy, S., Sarkar, A., Panja, S.C., Patra, S.N., 2023. An improved prediction of solar cycle 25 using deep learning based neural network. Sol. Phys. 298 (3), 50. doi:10.1007/s11207-023-02129-2.spa
dcterms.bibliographicCitationRamezan, C.A., Warner, T.A., Maxwell, A.E., 2019. Evaluation of sampling and cross-validation tuning strategies for regional-scale machine learning classification. Remote Sens. 11 (2), 185. doi:10.3390/rs11020185spa
dcterms.bibliographicCitationSalem, Y.B., Abdelkrim, M.N., 2020. Texture classification of fabric defects using machine learning. Int. J. Electr. Comput. Eng. 10 (4), 4390. doi:10.11591/ijece. v10i4.pp4390-4399.spa
dcterms.bibliographicCitationSaroughi, M., Mirzania, E., Achite, M., Katipoğlu, O.M., Ehteram, M., 2024. Shannon entropy of performance metrics to choose the best novel hybrid algorithm to predict groundwater level (case study: Tabriz plain, Iran). Environ. Monit. Assess. 196 (3), 1–20. doi:10.1007/s10661-024-12357-z.spa
dcterms.bibliographicCitationSchaffer, C., 1993. Selecting a classification method by cross-validation. Mach. Learn. 13, 135–143. doi:10.1007/BF00993106spa
dcterms.bibliographicCitationScherrer, P.H., Schou, J., Bush, R., Kosovichev, A., Bogart, R., Hoeksema, J., Liu, Y., Duvall, T., Zhao, J., Title, A., et al., 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol. Phys. 275, 207–227. doi:10.1007/s11207-011-9834-2spa
dcterms.bibliographicCitationSchou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R., Hoeksema, J., Liu, Y., Duvall, T., et al., 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys. 275, 229–259. doi:10.1007/s11207-011- 9842-2.spa
dcterms.bibliographicCitationSierra Porta, D., Tarazona-Alvarado, M., 2023. Dataset: Sun dynamics from topological features extraction. Mendeley Data, V1, doi:10.17632/5gh3xbvc92.1.spa
dcterms.bibliographicCitationSingh, A., Bhargawa, A., 2020. Ascendancy of solar variability on terrestrial climate: A review. J. Basic Appl. Sci 16, 105–130. doi:10.29169/1927-5129.2020.16.14.spa
dcterms.bibliographicCitationSolomon, S.C., Liu, H.-L., Marsh, D.R., McInerney, J.M., Qian, L., Vitt, F.M., 2019. Whole atmosphere climate change: Dependence on solar activity. J. Geophys. Res. Space Phys. 124 (5), 3799–3809. doi:10.1029/2019JA026678.spa
dcterms.bibliographicCitationSpencer, D.A., Johnson, L., Long, A.C., 2019. Solar sailing technology challenges. Aerosp. Sci. Technol. 93, 105276. doi:10.1016/j.ast.2019.07.009.spa
dcterms.bibliographicCitationStone, E.C., Frandsen, A., Mewaldt, R., Christian, E., Margolies, D., Ormes, J., Snow, F., 1998. The advanced composition explorer. Space Sci. Rev. 86, 1–22. doi:10.1023/A: 1005082526237.spa
dcterms.bibliographicCitationTamura, H., Mori, S., Yamawaki, T., 1978. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8 (6), 460–473. doi:10.1109/TSMC.1978. 4309999spa
dcterms.bibliographicCitationTarazona-Alvarado, M., Sierra-Porta, D., 2023. Dataset for sun dynamics from topological features. Data Brief 51, 109728. doi:10.1016/j.dib.2023.109728.spa
dcterms.bibliographicCitationTlatov, A.G., 2022. The shape of sunspots and solar activity cycles. Sol. Phys. 297 (8), 110. doi:10.1007/s11207-022-02045-x.spa
dcterms.bibliographicCitationTougui, I., Jilbab, A., El Mhamdi, J., 2021. Impact of the choice of cross-validation techniques on the results of machine learning-based diagnostic applications. Healthc. Informat. Res. 27 (3), 189–199. doi:10.4258/hir.2021.27.3.189.spa
dcterms.bibliographicCitationTsiropoula, G., 2003. Signatures of solar activity variability in meteorological parameters. J. Atmospheric Solar-Terrestrial Phys. 65 (4), 469–482. doi:10.1016/S1364- 6826(02)00295-X.spa
dcterms.bibliographicCitationWang, J., Wiens, J., Lundberg, S., 2021. Shapley flow: A graphbased approach to interpreting model predictions. In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 721– 729, https://ui.adsabs.harvard.edu/link_gateway/2020arXiv201014592W/ doi:10.48550/arXiv.2010.14592.spa
dcterms.bibliographicCitationWeerts, H.J., Mueller, A.C., Vanschoren, J., 2020. Importance of tuning hyperparameters of machine learning algorithms. doi:10.48550/arXiv.2007.07588, arXiv preprint arXiv:2007.07588.spa
dcterms.bibliographicCitationWilson, III, L.B., Brosius, A.L., Gopalswamy, N., Nieves-Chinchilla, T., Szabo, A., Hurley, K., Phan, T., Kasper, J.C., Lugaz, N., Richardson, I.G., et al., 2021. A quarter century of wind spacecraft discoveries. Rev. Geophys. doi:10.1029/2020RG000714.spa
dcterms.bibliographicCitationWu, C.-M., Chen, Y.-C., 1992. Statistical feature matrix for texture analysis. CVGIP, Graph. Models Image Process. 54 (5), 407–419. doi:10.1016/1049-9652(92)90025- S.spa
dcterms.bibliographicCitationXiao, Z., 2021. A review of machine learning methods applied in sunspot prediction. In: 2021 International Conference on Networking, Communications and Information Technology. NetCIT, IEEE, pp. 158–161. doi:10.1109/NetCIT54147.2021.00039spa
dcterms.bibliographicCitationYang, L., Shami, A., 2020. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295–316. doi:10.1016/j. neucom.2020.07.061spa
dcterms.bibliographicCitationZhang, J., Temmer, M., Gopalswamy, N., Malandraki, O., Nitta, N.V., Patsourakos, S., Shen, F., Vršnak, B., Wang, Y., Webb, D., et al., 2021. Earth-affecting solar transients: A review of progresses in solar cycle 24. Progr. Earth Planetary Sci. 8, 1–102. doi:10.1186/s40645-021-00426-7.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1016/j.ascom.2024.100857
dc.subject.keywordsMachine learningspa
dc.subject.keywordsSunspots predictionspa
dc.subject.keywordsSpectral imagesspa
dc.subject.keywordsSun’s dynamicsspa
dc.subject.keywordsFractal featuresspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.