Mostrar el registro sencillo del ítem

dc.contributor.authorHernández-Díaz, Nicolás
dc.contributor.authorPeñaloza, Yersica C.
dc.contributor.authorRios, Y. Yuliana
dc.contributor.authorMartínez-Santos, Juan Carlos
dc.contributor.authorPuertas, Edwin
dc.date.accessioned2024-06-25T13:37:33Z
dc.date.available2024-06-25T13:37:33Z
dc.date.issued2024-05-02
dc.date.submitted2024-06-25
dc.identifier.citationHernández-Díaz, N., Peñaloza, Y. C., Rios, Y. Y., Martinez-Santos, J. C., & Puertas, E. (2024). A computer vision system for detecting motorcycle violations in pedestrian zones. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-19356-9spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12684
dc.description.abstractThis paper presents a system that relies on computer vision to identify instances of motorcycle violations in crosswalks utilizing CNNs. The system was trained and evaluated on a novel public dataset published by the authors, which contains traffic images classified into four categories: motorcycles in crosswalks, motorcycles outside crosswalks, pedestrians in cross walks, and only motorbike outside. We demonstrate the viability of leveraging deep learning models such as YOLOv8 for this purpose and provide details on the training and performance of the model. This system has the potential to enable intelligent traffic enforcement to mit igate accidents in pedestrian zones; to develop the system, a dataset comprising over 6,000 images was amassed from publicly available traffic cameras and subsequently annotated. Several models, including YOLOv8, SSD, and MobileNet, were trained on this dataset. The YOLOv8 model attained the highest performance with a mean average precision of 84.6% across classes. The study presents the system architecture and training process. Results illus trate the potential of utilizing deep learning to detect traffic violations in pedestrian zones, which can promote intelligent traffic enforcement and improved safety.spa
dc.format.extent24 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMultimedia Tools and Applicationsspa
dc.titleA computer vision system for detecting motorcycle violations in pedestrian zonesspa
dcterms.bibliographicCitationde Cartagena A (2023) Plan de Desarrollo Cartagena 2020-2023. sedcartagena.gov.co. http://www. sedcartagena.gov.co/plan-de-desarrollo-cartagena-2020-2023/spa
dcterms.bibliographicCitationCartagena T (2021) Plan de acción Departamento Administrativo de Transito y Transporte - DATT  2021. DATT. https://www.transitocartagena.gov.co/normatividad/decretos-y-resoluciones.htmlspa
dcterms.bibliographicCitationToh CK, Sanguesa JA, Cano JC, Martinez FJ (2020) Advances in smart roads for future smart cities. Proc R Soc A Math Phys Eng Sci 476(2233):20190439. https://doi.org/10.1098/rspa.2019.0439spa
dcterms.bibliographicCitationHernández Díaz N, Peñaloza YC, Ríos YY, Magre Colorado LA (2022) Software to assist visually impaired people during the craps game using machine learning on python platform. In: Narváez FR, Proaño J, Morillo P, Vallejo D, González Montoya D, Díaz GM (eds) Smart Technologies, Systems and Applications, pp 175–189. Springer, Cham. https://doi.org/10.1007/978-3-030-99170-8_13spa
dcterms.bibliographicCitationSuarez OJ, Hernández Díaz N, Pardo Garcia A (2020) A real-time pattern recognition module via Matlab Arduino interface, Virtual. https://doi.org/10.18687/LACCEI2020.1.1.646spa
dcterms.bibliographicCitationSuarez OJ, Macias-Garcia E, Vega CJ, Peñaloza YC, Díaz NH, Garrido VM (2023) Design of a segmen tation and classification system for seed detection based on pixel intensity thresholds and convolutional neural networks. In: Orjuela-Cañón AD, Lopez J, Arias-Londoño JD, Figueroa-García JC (eds) Applica tions of computational intelligence, pp 1–17. Springer, Cham. https://doi.org/10.1007/978-3-031-29783- 0_1spa
dcterms.bibliographicCitationHernández-Díaz N, Pañaloza YC, Rios YY, Martinez-Santos JC, Puertas E (2023) Intelligent system to detect violations in pedestrian areas committed by vehicles in the city of cartagena de indias, 6. https:// doi.org/10.18687/LACCEI2023.1.1.1447spa
dcterms.bibliographicCitationlcaldía de Medellín (2023) Cámaras de CCTV. https://www.medellin.gov.co/simm/camaras-de circuito-cerrado Accessed 11-Dec-2020spa
dcterms.bibliographicCitationDíaz NH, Peñaloza YC, Rios YY,Martinez-Santos JC, Puertas E (2023) Dataset for detecting motorcyclists in pedestrian areas. Data in Brief 50:109610. https://doi.org/10.1016/j.dib.2023.109610spa
dcterms.bibliographicCitationDeruytter M, Peter J, Versavel J (2009) A detector for detecting traffic participants. https://worldwide. espacenet.com/publicationDetails/biblio?FT=D&date=20090527&DB=&locale=en_EP&CC=EP& NR=2063404A1&KC=A1&ND=1spa
dcterms.bibliographicCitation12. Fascioli A, Fedriga RI, Ghidoni S (2007) Vision-based monitoring of pedestrian crossings. In: 14th International Conference on Image Analysis and Processing (ICIAP 2007), pp 566–574. https://doi.org/ 10.1109/ICIAP.2007.4362838spa
dcterms.bibliographicCitationHariyono J, Jo K-H (2015) Detection of pedestrian crossing road. In: 2015 IEEE international conference on image processing (ICIP), pp 4585–4588. https://doi.org/10.1109/ICIP.2015.7351675spa
dcterms.bibliographicCitationPerdana MI, Anggraeni W, Sidharta HA, Yuniarno EM, Purnomo MH (2021) Early warning pedestrian crossing intention from its head gesture using head pose estimation. In: 2021 International seminar on intelligent technology and its applications (ISITIA), pp 402–407. https://doi.org/10.1109/ISITIA52817. 2021.9502231spa
dcterms.bibliographicCitationHudson M, Martin B, Hagan T, Demuth HB (2023) Neural Network ToolboxTM 7 User’s Guide. https:// dcc.ufrj.br/sadoc/machinelearning/nnet_ug.pdfspa
dcterms.bibliographicCitationZhao C, Chen X (2018) The study of pedestrian re-identification with the illumination change. In: 2018 IEEE 3rd advanced information technology, electronic and automation control conference (IAEAC), pp 133–137. https://doi.org/10.1109/IAEAC.2018.8577489spa
dcterms.bibliographicCitationPop DO, Rogozan A, Chatelain C, Nashashibi F, Bensrhair A (2019) Multi-task deep learning for pedes trian detection, action recognition and time to cross prediction. IEEE Access 7:149318–149327. https:// doi.org/10.1109/ACCESS.2019.2944792 123 Multimedia Tools and Applicationsspa
dcterms.bibliographicCitationPorouhan P, Premchaiswadi W (2020) Proposal of a smart pedestrian monitoring system based on char acteristics of internet of things (iot). In: 2020 18th International conference on ICT and knowledge engineering (ICT KE), pp 1–4. https://doi.org/10.1109/ICTKE50349.2020.9289891spa
dcterms.bibliographicCitationLiu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) Ssd: Single shot multibox detector. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer Vision - ECCV 2016. Springer, Cham, pp 21–37spa
dcterms.bibliographicCitationWang Z, Feng J, Zhang Y (2022) Pedestrian detection in infrared image based on depth transfer learning. Multimed Tools Appl 81. https://doi.org/10.1007/s11042-022-13058-wspa
dcterms.bibliographicCitationFerguson M, ak R, Lee Y-T, Law K (2017) Automatic localization of casting defects with convolutional neural networks. In: 2017 IEEE international conference on big data (Big Data), pp 1726–1735. https:// doi.org/10.1109/BigData.2017.8258115spa
dcterms.bibliographicCitationKadam K, Ahirrao S, Kotecha K (2022) Efficient approach towards detection and identification of copy move and image splicing forgeries using mask r-cnn with mobilenet v1. Comput Intell Neurosci 2022:1– 21. https://doi.org/10.1155/2022/6845326spa
dcterms.bibliographicCitationSandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2019) MobileNetV2: Inverted Residuals and Linear Bottlenecks. https://doi.org/10.48550/arXiv.1801.04381spa
dcterms.bibliographicCitationSandler M, Howard A (2018) MobileNetV2: The next generation of on-device computer vision networks. Google Research. https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.htmlspa
dcterms.bibliographicCitationhao Q (2024) Qfgaohao/pytorch-SSD: Mobilenetv1, mobilenetv2, VGG based SSD/SSD-lite implemen tation in pytorch 1.0 / pytorch 0.4. out-of-box support for retraining on open images dataset. ONNX and caffe2 support. experiment ideas like coordconv. GitHub. https://github.com/qfgaohao/pytorch-ssdspa
dcterms.bibliographicCitationDusty-Nv N (2024) Dusty-NV/Jetson-inference: Hello AI World Guide to deploying deep-learning infer ence networks and deep vision primitives with TENSORRT and Nvidia Jetson. NVIDIA. https://github. com/dusty-nv/jetson-inferencespa
dcterms.bibliographicCitationUltralytics Y (2024) Ultralytics/ultralytics: New - yolov8 in PyTorch; ONNX; CoreML; TFLite. Ultra lytics. https://github.com/ultralytics/ultralyticsspa
dcterms.bibliographicCitationHernández-Díaz N, Puertas E, Martinez-Santos JC, Archbold G, Rios Y, Peñaloza Y (2023) Dataset for Detecting Motorcyclists in Pedestrian Areas. Zenodo. https://doi.org/10.5281/zenodo.7935299spa
dcterms.bibliographicCitationFlow R (2024) Yolov5 Pytorch TXT annotation format. RoboFlow. https://roboflow.com/formats/yolov5- pytorch-txt 30. Flow R (2024) Pascal VOC XML annotation format. RoboFlow. https://roboflow.com/formats/pascal voc-xmlspa
dcterms.bibliographicCitationFoong NW (2022) Convert Pascal VOC XML to Yolo for Object Detection. Towards Data Science. https:// towardsdatascience.com/convert-pascal-voc-xml-to-yolo-for-object-detection-f969811ccba5spa
dcterms.bibliographicCitationWang Y, Jia Y, Chen W, Wang T, Zhang A (2024) Examining safe spaces for pedestrians and e-bicyclists at urban crosswalks: An analysis based on drone-captured video. Accident Anal Prev 194:107365. https:// doi.org/10.1016/j.aap.2023.107365spa
dcterms.bibliographicCitationHan B, Wang Y, Yang Z, Gao X (2020) Small-scale pedestrian detection based on deep neural network. IEEE Trans Intell Trans Syst 21(7):3046–3055. https://doi.org/10.1109/TITS.2019.2923752spa
dcterms.bibliographicCitationHan R, Xu M, Pei S (2024) Crowded pedestrian detection with optimal bounding box relocation. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-18019-5spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doihttps://doi.org/10.1007/s11042-024-19356-9
dc.subject.keywordsIA modelspa
dc.subject.keywordsComputer visionspa
dc.subject.keywordsMachine learningspa
dc.subject.keywordsPedestrian areasspa
dc.subject.keywordsAutonomous traffic control systemspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.