Mostrar el registro sencillo del ítem
A computer vision system for detecting motorcycle violations in pedestrian zones
dc.contributor.author | Hernández-Díaz, Nicolás | |
dc.contributor.author | Peñaloza, Yersica C. | |
dc.contributor.author | Rios, Y. Yuliana | |
dc.contributor.author | Martínez-Santos, Juan Carlos | |
dc.contributor.author | Puertas, Edwin | |
dc.date.accessioned | 2024-06-25T13:37:33Z | |
dc.date.available | 2024-06-25T13:37:33Z | |
dc.date.issued | 2024-05-02 | |
dc.date.submitted | 2024-06-25 | |
dc.identifier.citation | Hernández-Díaz, N., Peñaloza, Y. C., Rios, Y. Y., Martinez-Santos, J. C., & Puertas, E. (2024). A computer vision system for detecting motorcycle violations in pedestrian zones. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-19356-9 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12684 | |
dc.description.abstract | This paper presents a system that relies on computer vision to identify instances of motorcycle violations in crosswalks utilizing CNNs. The system was trained and evaluated on a novel public dataset published by the authors, which contains traffic images classified into four categories: motorcycles in crosswalks, motorcycles outside crosswalks, pedestrians in cross walks, and only motorbike outside. We demonstrate the viability of leveraging deep learning models such as YOLOv8 for this purpose and provide details on the training and performance of the model. This system has the potential to enable intelligent traffic enforcement to mit igate accidents in pedestrian zones; to develop the system, a dataset comprising over 6,000 images was amassed from publicly available traffic cameras and subsequently annotated. Several models, including YOLOv8, SSD, and MobileNet, were trained on this dataset. The YOLOv8 model attained the highest performance with a mean average precision of 84.6% across classes. The study presents the system architecture and training process. Results illus trate the potential of utilizing deep learning to detect traffic violations in pedestrian zones, which can promote intelligent traffic enforcement and improved safety. | spa |
dc.format.extent | 24 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Multimedia Tools and Applications | spa |
dc.title | A computer vision system for detecting motorcycle violations in pedestrian zones | spa |
dcterms.bibliographicCitation | de Cartagena A (2023) Plan de Desarrollo Cartagena 2020-2023. sedcartagena.gov.co. http://www. sedcartagena.gov.co/plan-de-desarrollo-cartagena-2020-2023/ | spa |
dcterms.bibliographicCitation | Cartagena T (2021) Plan de acción Departamento Administrativo de Transito y Transporte - DATT 2021. DATT. https://www.transitocartagena.gov.co/normatividad/decretos-y-resoluciones.html | spa |
dcterms.bibliographicCitation | Toh CK, Sanguesa JA, Cano JC, Martinez FJ (2020) Advances in smart roads for future smart cities. Proc R Soc A Math Phys Eng Sci 476(2233):20190439. https://doi.org/10.1098/rspa.2019.0439 | spa |
dcterms.bibliographicCitation | Hernández Díaz N, Peñaloza YC, Ríos YY, Magre Colorado LA (2022) Software to assist visually impaired people during the craps game using machine learning on python platform. In: Narváez FR, Proaño J, Morillo P, Vallejo D, González Montoya D, Díaz GM (eds) Smart Technologies, Systems and Applications, pp 175–189. Springer, Cham. https://doi.org/10.1007/978-3-030-99170-8_13 | spa |
dcterms.bibliographicCitation | Suarez OJ, Hernández Díaz N, Pardo Garcia A (2020) A real-time pattern recognition module via Matlab Arduino interface, Virtual. https://doi.org/10.18687/LACCEI2020.1.1.646 | spa |
dcterms.bibliographicCitation | Suarez OJ, Macias-Garcia E, Vega CJ, Peñaloza YC, Díaz NH, Garrido VM (2023) Design of a segmen tation and classification system for seed detection based on pixel intensity thresholds and convolutional neural networks. In: Orjuela-Cañón AD, Lopez J, Arias-Londoño JD, Figueroa-García JC (eds) Applica tions of computational intelligence, pp 1–17. Springer, Cham. https://doi.org/10.1007/978-3-031-29783- 0_1 | spa |
dcterms.bibliographicCitation | Hernández-Díaz N, Pañaloza YC, Rios YY, Martinez-Santos JC, Puertas E (2023) Intelligent system to detect violations in pedestrian areas committed by vehicles in the city of cartagena de indias, 6. https:// doi.org/10.18687/LACCEI2023.1.1.1447 | spa |
dcterms.bibliographicCitation | lcaldía de Medellín (2023) Cámaras de CCTV. https://www.medellin.gov.co/simm/camaras-de circuito-cerrado Accessed 11-Dec-2020 | spa |
dcterms.bibliographicCitation | Díaz NH, Peñaloza YC, Rios YY,Martinez-Santos JC, Puertas E (2023) Dataset for detecting motorcyclists in pedestrian areas. Data in Brief 50:109610. https://doi.org/10.1016/j.dib.2023.109610 | spa |
dcterms.bibliographicCitation | Deruytter M, Peter J, Versavel J (2009) A detector for detecting traffic participants. https://worldwide. espacenet.com/publicationDetails/biblio?FT=D&date=20090527&DB=&locale=en_EP&CC=EP& NR=2063404A1&KC=A1&ND=1 | spa |
dcterms.bibliographicCitation | 12. Fascioli A, Fedriga RI, Ghidoni S (2007) Vision-based monitoring of pedestrian crossings. In: 14th International Conference on Image Analysis and Processing (ICIAP 2007), pp 566–574. https://doi.org/ 10.1109/ICIAP.2007.4362838 | spa |
dcterms.bibliographicCitation | Hariyono J, Jo K-H (2015) Detection of pedestrian crossing road. In: 2015 IEEE international conference on image processing (ICIP), pp 4585–4588. https://doi.org/10.1109/ICIP.2015.7351675 | spa |
dcterms.bibliographicCitation | Perdana MI, Anggraeni W, Sidharta HA, Yuniarno EM, Purnomo MH (2021) Early warning pedestrian crossing intention from its head gesture using head pose estimation. In: 2021 International seminar on intelligent technology and its applications (ISITIA), pp 402–407. https://doi.org/10.1109/ISITIA52817. 2021.9502231 | spa |
dcterms.bibliographicCitation | Hudson M, Martin B, Hagan T, Demuth HB (2023) Neural Network ToolboxTM 7 User’s Guide. https:// dcc.ufrj.br/sadoc/machinelearning/nnet_ug.pdf | spa |
dcterms.bibliographicCitation | Zhao C, Chen X (2018) The study of pedestrian re-identification with the illumination change. In: 2018 IEEE 3rd advanced information technology, electronic and automation control conference (IAEAC), pp 133–137. https://doi.org/10.1109/IAEAC.2018.8577489 | spa |
dcterms.bibliographicCitation | Pop DO, Rogozan A, Chatelain C, Nashashibi F, Bensrhair A (2019) Multi-task deep learning for pedes trian detection, action recognition and time to cross prediction. IEEE Access 7:149318–149327. https:// doi.org/10.1109/ACCESS.2019.2944792 123 Multimedia Tools and Applications | spa |
dcterms.bibliographicCitation | Porouhan P, Premchaiswadi W (2020) Proposal of a smart pedestrian monitoring system based on char acteristics of internet of things (iot). In: 2020 18th International conference on ICT and knowledge engineering (ICT KE), pp 1–4. https://doi.org/10.1109/ICTKE50349.2020.9289891 | spa |
dcterms.bibliographicCitation | Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) Ssd: Single shot multibox detector. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer Vision - ECCV 2016. Springer, Cham, pp 21–37 | spa |
dcterms.bibliographicCitation | Wang Z, Feng J, Zhang Y (2022) Pedestrian detection in infrared image based on depth transfer learning. Multimed Tools Appl 81. https://doi.org/10.1007/s11042-022-13058-w | spa |
dcterms.bibliographicCitation | Ferguson M, ak R, Lee Y-T, Law K (2017) Automatic localization of casting defects with convolutional neural networks. In: 2017 IEEE international conference on big data (Big Data), pp 1726–1735. https:// doi.org/10.1109/BigData.2017.8258115 | spa |
dcterms.bibliographicCitation | Kadam K, Ahirrao S, Kotecha K (2022) Efficient approach towards detection and identification of copy move and image splicing forgeries using mask r-cnn with mobilenet v1. Comput Intell Neurosci 2022:1– 21. https://doi.org/10.1155/2022/6845326 | spa |
dcterms.bibliographicCitation | Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2019) MobileNetV2: Inverted Residuals and Linear Bottlenecks. https://doi.org/10.48550/arXiv.1801.04381 | spa |
dcterms.bibliographicCitation | Sandler M, Howard A (2018) MobileNetV2: The next generation of on-device computer vision networks. Google Research. https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html | spa |
dcterms.bibliographicCitation | hao Q (2024) Qfgaohao/pytorch-SSD: Mobilenetv1, mobilenetv2, VGG based SSD/SSD-lite implemen tation in pytorch 1.0 / pytorch 0.4. out-of-box support for retraining on open images dataset. ONNX and caffe2 support. experiment ideas like coordconv. GitHub. https://github.com/qfgaohao/pytorch-ssd | spa |
dcterms.bibliographicCitation | Dusty-Nv N (2024) Dusty-NV/Jetson-inference: Hello AI World Guide to deploying deep-learning infer ence networks and deep vision primitives with TENSORRT and Nvidia Jetson. NVIDIA. https://github. com/dusty-nv/jetson-inference | spa |
dcterms.bibliographicCitation | Ultralytics Y (2024) Ultralytics/ultralytics: New - yolov8 in PyTorch; ONNX; CoreML; TFLite. Ultra lytics. https://github.com/ultralytics/ultralytics | spa |
dcterms.bibliographicCitation | Hernández-Díaz N, Puertas E, Martinez-Santos JC, Archbold G, Rios Y, Peñaloza Y (2023) Dataset for Detecting Motorcyclists in Pedestrian Areas. Zenodo. https://doi.org/10.5281/zenodo.7935299 | spa |
dcterms.bibliographicCitation | Flow R (2024) Yolov5 Pytorch TXT annotation format. RoboFlow. https://roboflow.com/formats/yolov5- pytorch-txt 30. Flow R (2024) Pascal VOC XML annotation format. RoboFlow. https://roboflow.com/formats/pascal voc-xml | spa |
dcterms.bibliographicCitation | Foong NW (2022) Convert Pascal VOC XML to Yolo for Object Detection. Towards Data Science. https:// towardsdatascience.com/convert-pascal-voc-xml-to-yolo-for-object-detection-f969811ccba5 | spa |
dcterms.bibliographicCitation | Wang Y, Jia Y, Chen W, Wang T, Zhang A (2024) Examining safe spaces for pedestrians and e-bicyclists at urban crosswalks: An analysis based on drone-captured video. Accident Anal Prev 194:107365. https:// doi.org/10.1016/j.aap.2023.107365 | spa |
dcterms.bibliographicCitation | Han B, Wang Y, Yang Z, Gao X (2020) Small-scale pedestrian detection based on deep neural network. IEEE Trans Intell Trans Syst 21(7):3046–3055. https://doi.org/10.1109/TITS.2019.2923752 | spa |
dcterms.bibliographicCitation | Han R, Xu M, Pei S (2024) Crowded pedestrian detection with optimal bounding box relocation. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-18019-5 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | https://doi.org/10.1007/s11042-024-19356-9 | |
dc.subject.keywords | IA model | spa |
dc.subject.keywords | Computer vision | spa |
dc.subject.keywords | Machine learning | spa |
dc.subject.keywords | Pedestrian areas | spa |
dc.subject.keywords | Autonomous traffic control system | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1454]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.