Mostrar el registro sencillo del ítem

dc.contributor.authorHernandez Fernandez, Joaquin
dc.contributor.authorMartinez-Trespalacios, Jose
dc.contributor.authorMarquez, Edgar
dc.date.accessioned2024-05-17T12:27:30Z
dc.date.available2024-05-17T12:27:30Z
dc.date.issued2024-04-15
dc.date.submitted2024-05-16
dc.identifier.citationHernández-Fernández, J.; Martinez-Trespalacios, J.; Marquez, E. Development of a Measurement System Using Infrared Spectroscopy-Attenuated Total Reflectance, Principal Component Analysis and Artificial Intelligence for the Safe Quantification of the Nucleating Agent Sorbitol in Food Packaging. Foods 2024, 13, 1200. https://doi.org/10.3390/foods13081200spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12670
dc.description.abstractSorbitol derivatives and other additives are commonly used in various products, such as packaging or food packaging, to improve their mechanical, physical, and optical properties. To accurately and precisely evaluate the efficacy of adding sorbitol-type nucleating agents to these articles, their quantitative determination is essential. This study systematically investigated the quantification of sorbitol-type nucleating agents in food packaging made from impact copolymers of polypropylene (PP) and polyethylene (PE) using attenuated total reflectance infrared spectroscopy (ATR-FTIR) together with analysis of principal components (PCA) and machine learning algorithms. The absorption spectra revealed characteristic bands corresponding to the C–O–C bond and hydroxyl groups attached to the cyclohexane ring of the molecular structure of sorbitol, providing crucial information for identifying and quantifying sorbitol derivatives. PCA analysis showed that with the selected FTIR spectrum range and only the first two components, 99.5% of the variance could be explained. The resulting score plot showed a clear pattern distinguishing different concentrations of the nucleating agent, affirming the predictability of concentrations based on an impact copolymer. The study then employed machine learning algorithms (NN, SVR) to establish prediction models, evaluating their quality using metrics such as RMSE, R2 , and RMSECV. Hyperparameter optimiza tion was performed, and SVR showed superior performance, achieving near-perfect predictions (R2 = 0.9999) with an RMSE of 0.100 for both calibration and prediction. The chosen SVR model features two hidden layers with 15 neurons each and uses the Adam algorithm, balanced precision, and computational efficiency. The innovative ATR-FTIR coupled SVR model presented a novel and rapid approach to accurately quantify sorbitol-type nucleating agents in polymer production processes for polymer research and in the analysis of nucleating agent derivatives. The analytical performance of this method surpassed traditional methods (PCR, NN)spa
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceFoodsspa
dc.titleDevelopment of a Measurement System Using Infrared Spectroscopy-Attenuated Total Reflectance, Principal Component Analysis and Artificial Intelligence for the Safe Quantification of the Nucleating Agent Sorbitol in Food Packagingspa
dcterms.bibliographicCitationPlastics-the Facts 2019 An Analysis of European Plastics Production, Demand and Waste Data. Available online: https:// plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf (accessed on 24 November 2023).spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying parts per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833. [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [CrossRef]spa
dcterms.bibliographicCitationKabir, E.; Kaur, R.; Lee, J.; Kim, K.H.; Kwon, E.E. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean. Prod. 2020, 258, 120536. [CrossRef]spa
dcterms.bibliographicCitationRendón-Villalobos, R.; Ortíz-Sánchez, A.; Tovar-Sánchez, E.; Flores-Huicochea, E. The role of biopolymers in obtaining environ mentally friendly materials. Compos. Renew. Sustain. Mater. 2016, 151.spa
dcterms.bibliographicCitationChacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDavis, G.; Song, J.H. Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind. Crops Prod. 2006, 23, 147–161. [CrossRef]spa
dcterms.bibliographicCitationRaheem, D. Application of plastics and paper as food packaging materials—An overview. Emir. J. Food Agric. 2013, 25, 177–188. [CrossRef]spa
dcterms.bibliographicCitationShaaban, H.A.; Farouk, A. Preservation and Packaging Food Recent Methods and Techniques: A Review. Biomed. J. Sci. Tech. Res. 2022, 46, 37680–37695. [CrossRef]spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; Hernández-Fernández, J.; López-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2022, 139, 51734. [CrossRef]spa
dcterms.bibliographicCitationUrzendowski, I.R.; Pechak, D.G.; Pechak, D.G. Characterization of Food Packaging Materials by Microscopic, Spectrophotometric, Thermal and Dynamic Mechanical Analysis. Food Struct. 1992, 11, 301–314.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKristiansen, P.M. Nucleation and clarification of semi-crystalline polymers. 2004. Available online: https://www.research collection.ethz.ch/bitstream/handle/20.500.11850/148326/eth-27485-01.pdf (accessed on 24 November 2023).spa
dcterms.bibliographicCitationEliaerts, J.; Dardenne, P.; Meert, N.; Van Durme, F.; Samyn, N.; Janssens, K.; De Wael, K. Rapid classification and quantification of cocaine in seized powders with ATR-FTIR and chemometrics. Drug Test Anal. 2017, 9, 1480–1489. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationNucleating and Clarifying Agents for Polyolefins—Hoffmann—2001—Macromolecular Symposia—Wiley Online Library. Avail able online: https://onlinelibrary.wiley.com/doi/10.1002/1521-3900(200112)176:1%3C83::AID-MASY83%3E3.0.CO;2-N (ac cessed on 17 November 2023).spa
dcterms.bibliographicCitationGahleitner, M.; Grein, C.; Kheirandish, S.; Wolfschwenger, J. Nucleation of polypropylene homo- and copolymers. Int. Polym. Process. 2011, 26, 2–20. [CrossRef]spa
dcterms.bibliographicCitationMenyhárd, A.; Bredács, M.; Simon, G.; Horváth, Z. Determination of nucleus density in semicrystalline polymers from non isothermal crystallization curves. Macromolecules 2015, 48, 2561–2569. [CrossRef]spa
dcterms.bibliographicCitationZhuravlev, E.; Wurm, A.; Pötschke, P.; Androsch, R.; Schmelzer, J.W.P.; Schick, C. Kinetics of nucleation and crystallization of poly(ε-caprolactone)—Multiwalled carbon nanotube composites. Eur. Polym. J. 2014, 52, 1–11. [CrossRef]spa
dcterms.bibliographicCitationSchawe, J.E.K.; Budde, F.; Alig, I. Non-isothermal crystallization of polypropylene with sorbitol-type nucleating agents at cooling rates used in processing. Polym. Int. 2019, 68, 240–247. [CrossRef]spa
dcterms.bibliographicCitationFillon, B.; Lotz, B.; Thierry, A.; Wittmann, J.C. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric ‘efficiency scale’ and evaluation of nucleating additives in isotactic polypropylene (α phase). J. Polym. Sci. B Polym. Phys. 1993, 31, 1395–1405. [CrossRef]spa
dcterms.bibliographicCitationSmith, T.L.; Masilamani, D.; Bui, L.K.; Khanna, Y.P.; Bray, R.G.; Hammond, W.B.; Binder-Castelli, S. The Mechanism of Action of Sugar Acetals as Nucleating Agents for Polypropylene. Macromolecules 1994, 27, 3147–3155. [CrossRef]spa
dcterms.bibliographicCitationNagarajan, K.; Myerson, A.S. Molecular Dynamics of Nucleation and Crystallization of Polymers. Cryst. Growth Des. 2001, 1, 131–142. [CrossRef]spa
dcterms.bibliographicCitationMarco, C.; Ellis, G.; Gómez, M.A.; Arribas, J.M. Comparative study of the nucleation activity of third-generation sorbitol-based nucleating agents for isotactic polypropylene. J. Appl. Polym. Sci. 2002, 84, 2440–2450. [CrossRef]spa
dcterms.bibliographicCitationKristiansen, M.; Werner, M.; Tervoort, T.; Smith, P.; Blomenhofer, M.; Schmidt, H.W. The Binary System Isotactic Polypropylene/Bis(3,4-dimethylbenzylidene)sorbitol: Phase Behavior, Nucleation, and Optical Properties. Macromolecules 2003, 36, 5150–5156. [CrossRef]spa
dcterms.bibliographicCitationMarco, C.; Ellis, G.; Gómez, M.A.; Arribas, J.M. Analysis of the isothermal crystallization of isotactic polypropylene nucleated with sorbitol derivatives. J. Appl. Polym. Sci. 2003, 88, 2261–2274. [CrossRef]spa
dcterms.bibliographicCitationMicrostructural Characterization of Plasticized Starch-Based Films—García—2000—Starch—Stärke—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-379X%28200006%2952%3A4%3C118%3A%3AAID STAR118%3E3.0.CO%3B2-0 (accessed on 17 November 2023). 28. Tian, H.; Liu, D.; Yao, Y.; Ma, S.; Zhang, X.; Xiang, A. Effect of Sorbspa
dcterms.bibliographicCitationTian, H.; Liu, D.; Yao, Y.; Ma, S.; Zhang, X.; Xiang, A. Effect of Sorbitol Plasticizer on the Structure and Properties of Melt Processed Polyvinyl Alcohol Films. J. Food Sci. 2017, 82, 2926–2932. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationWang, J.; Dou, Q.; Wu, S.; Chen, X. Influence of the amount of salts of rosin acid on the nonisothermal crystallization, morphology, and properties of isotactic polypropylene. Polym. Eng. Sci. 2007, 47, 889–897. [CrossRef]spa
dcterms.bibliographicCitationHuo, H.; Jiang, S.; An, L.; Feng, J. Influence of Shear on Crystallization Behavior of the β Phase in Isotactic Polypropylene with β-Nucleating Agent. Macromolecules 2004, 37, 2478–2483. [CrossRef]spa
dcterms.bibliographicCitationUllmann’s Polymers and Plastics: Products and Processes. Available online: https://books.google.com/books/about/Ullmann_ s_Polymers_and_Plastics_4_Volume.html?hl=es&id=MuLNwQEACAAJ (accessed on 17 November 2023).spa
dcterms.bibliographicCitationTsochatzis, E.D.; Theodoridis, G.; Gika, H.G. Development and validation of a uhplc-qtof ms method for the determination of sorbitol-based nuclear clarifying agents in food simulants after migration from food contact materials. Appl. Sci. 2021, 11, 3789. [CrossRef]spa
dcterms.bibliographicCitationLenhart, A.; Chey, W.D. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. Adv. Nutr. 2017, 8, 587–596. [CrossRef]spa
dcterms.bibliographicCitationSternbauer, L.; Dieplinger, J.; Buchberger, W.; Marosits, E. Determination of nucleating agents in plastic materials by GC/MS after microwave-assisted extraction with in situ microwave-assisted derivatization. Talanta 2014, 128, 63–68. [CrossRef]spa
dcterms.bibliographicCitationMcDonald, J.G.; Cummins, C.L.; Barkley, R.M.; Thompson, B.M.; Lincoln, H.A. Identification and quantitation of sorbitol-based nuclear clarifying agents extracted from common laboratory and consumer plasticware made of polypropylene. Anal. Chem. 2008, 80, 5532–5541. [CrossRef]spa
dcterms.bibliographicCitationGrembecka, M.; Lebiedzi ´nska, A.; Szefer, P. Simultaneous separation and determination of erythritol, xylitol, sorbitol, mannitol, maltitol, fructose, glucose, sucrose and maltose in food products by high performance liquid chromatography coupled to charged aerosol detector. Microchem. J. 2014, 117, 77–82. [CrossRef]spa
dcterms.bibliographicCitationTsochatzis, E.D.; Lopes, J.A.; Kappenstein, O.; Tietz, T.; Hoekstra, E.J. Quantification of PET cyclic and linear oligomers in teabags by a validated LC-MS method—In silico toxicity assessment and consumer’s exposure. Food Chem. 2020, 317, 2020. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationNerin, C.; Alfaro, P.; Aznar, M.; Domeño, C. The challenge of identifying non-intentionally added substances from food packaging materials: A review. Anal. Chim. Acta 2013, 775, 14–24. [CrossRef]spa
dcterms.bibliographicCitationPitsch, J.; Weghuber, J. Hydrophilic Interaction Chromatography Coupled with Charged Aerosol Detection for Simultaneous Quantitation of Carbohydrates, Polyols and Ions in Food and Beverages. Molecules 2019, 24, 4333. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKöster, D.; Wolbert, J.B.; Schulte, M.S.; Jochmann, M.A.; Schmidt, T.C. Origin of Xylitol in Chewing Gum: A Compound-Specific Isotope Technique for the Differentiation of Corn- and Wood-Based Xylitol by LC-IRMS. J. Agric. Food Chem. 2018, 66, 2015–2020. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHadjikinova, R.; Petkova, N.; Hadjikinov, D.; Denev, P.; Hrusavov, D. Development and Validation of HPLC-RID method for Determination of Sugars and Polyols. J. Pharm. Sci. Res. 2017, 9, 1263.spa
dcterms.bibliographicCitationMolnár-Perl, I. Simultaneous quantitation of acids and sugars by chromatography: Gas or high-performance liquid chromatogra phy? J. Chromatogr. A 1999, 845, 181–195. [CrossRef]spa
dcterms.bibliographicCitation. Medeiros, P.M.; Simoneit, B.R.T. Analysis of sugars in environmental samples by gas chromatography–mass spectrometry. J. Chromatogr. A 2007, 1141, 271–278. [CrossRef]spa
dcterms.bibliographicCitationDe Castro, E.D.S.G.; Cassella, R.J. Direct determination of sorbitol and sodium glutamate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) in the thermostabilizer employed in the production of yellow-fever vaccine. Talanta 2016, 152, 33–38. [CrossRef]spa
dcterms.bibliographicCitationCassella, A.R.; Cassella, R.J.; Garrigues, S.; Santelli, R.E.; De Campos, R.C.; De la Guardia, M. Flow injection-FTIR determination of dithiocarbamatepesticides. Analyst 2000, 125, 1829–1833. [CrossRef]spa
dcterms.bibliographicCitationArmenta, S.; Quintás, G.; Moros, J.; Garrigues, S.; De La Guardia, M. Fourier transform infrared spectrometric strategies for the determination of Buprofezin in pesticide formulations. Anal. Chim. Acta 2002, 468, 81–90. [CrossRef]spa
dcterms.bibliographicCitationQuintás, G.; Armenta, S.; Morales-Noé, A.; Garrigues, S.; De La Guardia, M. Simultaneous determination of Folpet and Metalaxyl in pesticide formulations by flow injection Fourier transform infrared spectrometry. Anal. Chim. Acta 2003, 480, 11–21. [CrossRef]spa
dcterms.bibliographicCitationKhanmohammadi, M.; Armenta, S.; Garrigues, S.; de la Guardia, M. Mid- and near-infrared determination of metribuzin in agrochemicals. Vib. Spectrosc. 2008, 46, 82–88. [CrossRef]spa
dcterms.bibliographicCitationMoros, J.; Armenta, S.; Garrigues, S.; de la Guardia, M. Quality control of Metamitron in agrochemicals using Fourier transform infrared spectroscopy in the middle and near range. Anal. Chim. Acta 2006, 565, 255–260. [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 1234, 30, 4800–4808. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/foods13081200
dc.subject.keywordsSorbitolspa
dc.subject.keywordsNucleating agentspa
dc.subject.keywordsInfrared spectroscopy machine learningspa
dc.subject.keywordsRMSEspa
dc.subject.keywordsSVRspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.