Mostrar el registro sencillo del ítem

dc.contributor.authorHernandez Fernandez, Joaquin
dc.contributor.authorPérez Mendoza, Jaime
dc.contributor.authorOrtega-Toro, Rodrigo
dc.date.accessioned2024-05-10T19:57:04Z
dc.date.available2024-05-10T19:57:04Z
dc.date.issued2024-04-21
dc.date.submitted2024-05-10
dc.identifier.citationHernández-Fernández, J.; Pérez-Mendoza, J.; Ortega-Toro, R. Quantification of Irgafos P-168 and Degradative Profile in Samples of a Polypropylene/Polyethylene Composite Using Microwave, Ultrasound and Soxhlet Extraction Techniques. J. Compos. Sci. 2024, 8, 156. https://doi.org/10.3390/jcs8040156spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12669
dc.description.abstractIn polypropylene/polyethylene composite (C-PP/PE) production, stabilizing additives such as Irgafos P-168 are essential as antioxidant agents. In this study, an investigation was carried out that covers different solid–liquid extraction methods (Soxhlet, ultrasound, and microwaves); various variables were evaluated, such as temperature, extraction time, the choice of solvents, and the type of C-PP/PE used, and the gas chromatography coupled to mass spectrometry (GC-MS) technique was used to quantify the presence of Irgafos P-168 in the C-PP/PE samples. The results revealed that microwave extraction was the most effective in recovering Irgafos P-168. A recovery of 96.7% was achieved when using dichloromethane as a solvent, and 92.83% was achieved when using limonene as a solvent. The ultrasound technique recovered 91.74% using dichloromethane and 89.71% using limonene. The Soxhlet extraction method showed the lowest recovery percentages of 57.39% using dichloromethane as a solvent and 55.76% with limonene, especially when the C-PP/PE was in the form of pellets. The degradation products that obtained the highest degradation percentages were Bis (di-test-butyl phenyl) phosphate and Mono (di-test-butyl phenyl) phosphate using the microwave method with dichloromethane as a solvent and PP in film. Finally, the possible mechanisms for forming the degradation compounds of Irgafos P-168 were postulatedspa
dc.format.extent21 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceJournal of Composites Sciencesspa
dc.titleQuantification of Irgafos P-168 and Degradative Profile in Samples of a Polypropylene/Polyethylene Composite Using Microwave, Ultrasound and Soxhlet Extraction Techniquesspa
dcterms.bibliographicCitationPfaendner, R. How will additives shape the future of plastics? Polym. Degrad. Stab. 2006, 91, 2249–2256. [CrossRef]spa
dcterms.bibliographicCitationLiu, Z.; Yu, H.; Lu, L.; Lv, X.; Ju, G.; Zhao, J.; Sun, F.; Wang, Y.; Yu, W. Simultaneous Determination and Exposure Assessment of Antioxidants in Food-Contact Plastic Materials by HPLC-MS/MS. J. Food Prot. 2023, 86, 100121. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; Hernández-Fernández, J.; López-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2022, 139, 51734. [CrossRef]spa
dcterms.bibliographicCitationAmbrogi, V.; Carfagna, C.; Cerruti, P.; Marturano, V. Additives in Polymers. Modif. Polym. Prop. 2017, 87–108. [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationChacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationGreen, S.; Bai, S.; Cheatham, M.; Cong, R.; Yau, W. Determination of antioxidants in polyolefins using total dissolution methodology followed by RPLC. J. Sep. Sci. 2010, 33, 3455–3462. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSpikes, H. Friction Modifier Additives. Tribol. Lett. 2015, 60, 5. [CrossRef]spa
dcterms.bibliographicCitationMuller, B. Colorants for Thermoplastic Polymers. In Applied Plastics Engineering Handbook: Processing and Materials; William Andrew Publishing: Norwich, NY, USA, 2011; pp. 435–440. [CrossRef]spa
dcterms.bibliographicCitationMoura, J.C.V.P.; Oliveira-Campos, A.M.F.; Griffiths, J. The effect of additives on the photostability of dyed polymers. Dye. Pigment. 1997, 33, 173–196. [CrossRef]spa
dcterms.bibliographicCitationAllen, N.S.; Edge, M. Perspectives on additives for polymers. 1. Aspects of stabilization. J. Vinyl Addit. Technol. 2021, 27, 5–27. [CrossRef]spa
dcterms.bibliographicCitationMüller, W.W.; Jakob, I.; Li, C.; Tatzky-Gerth, R. Antioxidant depletion and oit values of high impact pp strands. Chin. J. Polym. Sci. (Engl. Ed.) 2009, 27, 435–445. [CrossRef]spa
dcterms.bibliographicCitationYan, Y.; Hu, C.Y.; Wang, Z.W.; Jiang, Z.W. Degradation of Irgafos 168 and migration of its degradation products from PP-R composite films. Packag. Technol. Sci. 2018, 31, 679–688. [CrossRef]spa
dcterms.bibliographicCitationSingh, N.; Mann, B.; Sharma, R.; Verma, A.; Panjagari, N.R.; Gandhi, K. Identification of polymer additives from multilayer milk packaging materials by liquid-solid extraction coupled with GC-MS. Food Packag. Shelf Life 2022, 34, 100975. [CrossRef]spa
dcterms.bibliographicCitationVandenburg, H.J. Critical Review: Analytical Extraction of Additives from Polymers. Analyst 1997, 122, 101R–116R. [CrossRef]spa
dcterms.bibliographicCitationCano, J.M.; Marín, M.L.; Sánchez, A.; Hernandez, V. Determination of adipate plasticizers in poly(vinyl chloride) by microwave assisted extraction. J. Chromatogr. A 2002, 963, 401–409. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKudo, Y. Development of a screening method for phthalate esters in polymers using a quantitative database in combination with pyrolyzer /thermal desorption gas chromatography-mass spectrometry. J. Chromatogr. A 2019, 1602, 441–449. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationGhafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds, Antioxidants, and Anthocyanins from Grape (Vitis vinifera) Seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationCamacho, W.; Karlsson, S. Quality-determination of recycled plastic packaging waste by identification of contaminants by GC–MS after microwave-assisted extraction (MAE). Polym. Degrad. Stab. 2000, 71, 123–134. [CrossRef]spa
dcterms.bibliographicCitationLópez-Bascón, M.A.; De Castro, M.L. Soxhlet Extraction. Liq. Phase Extr. 2020, 327–354. [CrossRef]spa
dcterms.bibliographicCitationRomdhane, M.; Gourdon, C. Investigation in solid–liquid extraction: Influence of ultrasound. Chem. Eng. J. 2002, 87, 11–19. [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Reyes, A.F. Valuation of the Synthetic Antioxidant Tris-(Diterbutyl-Phenol)-Phosphite (Irgafos P-168) from Industrial Wastewater and Application in Polypropylene Matrices to Minimize Its Thermal Degradation. Molecules 2023, 28, 3163. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationRosa, G.S.; Vanga, S.K.; Gariepy, Y.; Raghavan, V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innov. Food Sci. Emerg. Technol. 2019, 58, 102234. [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808. [CrossRef]spa
dcterms.bibliographicCitationNaviglio, D.; Scarano, P.; Ciaravolo, M.; Gallo, M. Rapid Solid-Liquid Dynamic Extraction (RSLDE): A Powerful and Greener Alternative to the Latest Solid-Liquid Extraction Techniques. Foods 2019, 8, 245. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationShestakova, M.; Sillanpää, M. Removal of dichloromethane from soil and wastewater: A review. Chemosphere 2013, 93, 1258–1267. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKane, A.; Giraudet, S.; Vilmain, J.B.; Le Cloirec, P. Intensification of the temperature-swing adsorption process with a heat pump for the recovery of dichloromethane. J. Environ. Chem. Eng. 2015, 3, 734–743. [CrossRef]spa
dcterms.bibliographicCitationZhao, Y.-B.; Lv, X.-D.; Ni, H.-G. Solvent-based separation and recycling of waste plastics: A review. Chemosphere 2018, 209, 707–720. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationVieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018, 283, 97–106. [CrossRef]spa
dcterms.bibliographicCitationJongedijk, E.; Cankar, K.; Buchhaupt, M.; Schrader, J.; Bouwmeester, H.; Beekwilder, J. Biotechnological production of limonene in microorganisms. Appl. Microbiol. Biotechnol. 2016, 100, 2927–2938. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationAkhavan-Mahdavi, S. Nanodelivery systems for d-limonene; techniques and applications. Food Chem. 2022, 384, 132479. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationCui, G. Potential Use of Limonene as an Alternative Solvent for Extraction of Gutta-Percha from Eucommia ulmoides. ACS Sustain. Chem. Eng. 2022, 10, 11057–11068. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/jcs8040156
dc.subject.keywordsPolypropylene/polyethylene composite (C-PP/PE)spa
dc.subject.keywordsIrgafos P-168spa
dc.subject.keywordsExtraction methodsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.