Mostrar el registro sencillo del ítem

dc.contributor.authorMuentes Acevedo, Jeovanny de Jesus
dc.coverage.spatialColombia
dc.date.accessioned2024-05-07T11:56:21Z
dc.date.available2024-05-07T11:56:21Z
dc.date.issued2024-04-18
dc.date.submitted2024-05-06
dc.identifier.citationAcevedo, J.M. Genericity of Homeomorphisms with Full Mean Hausdorff Dimension. Regul. Chaot. Dyn. (2024). https://doi.org/10.1134/S1560354724510014spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12668
dc.description.abstractIt is well known that the presence of horseshoes leads to positive entropy. If our goal is to construct a continuous map with infinite entropy, we can consider an infinite sequence of horseshoes, ensuring an unbounded number of legs. Estimating the exact values of both the metric mean dimension and mean Hausdorff dimension for a homeomorphism is a challenging task. We need to establish a precise relationship between the sizes of the horseshoes and the number of appropriated legs to control both quantities. Let N be an n -dimensional compact Riemannian manifold, where n⩾2 , and α∈[0,n] . In this paper, we construct a homeomorphism ϕ:N→N with mean Hausdorff dimension equal to α . Furthermore, we prove that the set of homeomorphisms on N with both lower and upper mean Hausdorff dimensions equal to α is dense in Hom(N) . Additionally, we establish that the set of homeomorphisms with upper mean Hausdorff dimension equal to n contains a residual subset of Hom(N).spa
dc.format.extent17
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceRegular and Chaotic Dynamicsspa
dc.titleGenericity of Homeomorphisms with Full Mean Hausdorff Dimensionspa
dcterms.bibliographicCitationAcevedo, J. M., Genericity of Continuous Maps with Positive Metric Mean Dimension, Results Math., 2022, vol. 77, no. 1, Paper No. 2, 30 pp.spa
dcterms.bibliographicCitationAcevedo, J. M., Romaña, S., and Arias, R., Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms, J. Dyn. Diff. Equat., 2024 (in press).spa
dcterms.bibliographicCitationAcevedo, J. M., Baraviera, A., Becker, A. J., and Scopel, É., Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric, Preprint (2022).spa
dcterms.bibliographicCitationArtin, M. and Mazur, B., On Periodic Points, Ann. of Math. (2), 1965, vol. 81, pp. 82–99.spa
dcterms.bibliographicCitationBackes, L. and Rodrigues, F. B., A Variational Principle for the Metric Mean Dimension of Level Sets, IEEE Trans. Inform. Theory, 2023, vol. 69, no. 9, pp. 5485–5496.spa
dcterms.bibliographicCitationCheng, D., Li, Zh., and Selmi, B., Upper Metric Mean Dimensions with Potential on Subsets, Nonlinearity, 2021, vol. 34, no. 2, pp. 852–867.spa
dcterms.bibliographicCitationDou, D., Minimal Subshifts of Arbitrary Mean Topological Dimension, Discrete Contin. Dyn. Syst., 2017, vol. 37, no. 3, pp. 1411–1424.spa
dcterms.bibliographicCitationCarvalho, M., Rodrigues, F. B., and Varandas, P., Generic Homeomorphisms Have Full Metric Mean Dimension, Ergodic Theory Dynam. Systems, 2022, vol. 42, no. 1, pp. 40–64.spa
dcterms.bibliographicCitationFalconer, K., Fractal Geometry: Mathematical Foundations and Applications, 3rd ed., Chichester: Wiley, 2014.spa
dcterms.bibliographicCitationFurstenberg, H., Disjointness in Ergodic Theory, Minimal Sets, and a Problem in Diophantine Approximation, Math. Systems Theory, 1967, vol. 1, no. 1, pp. 1–49.spa
dcterms.bibliographicCitationGromov, M., Topological Invariants of Dynamical Systems and Spaces of Holomorphic Maps: 1, Math. Phys. Anal. Geom., 1999, vol. 2, no. 4, pp. 323–415.spa
dcterms.bibliographicCitationGutman, Y., Embedding Topological Dynamical Systems with Periodic Points in Cubical Shifts, Ergodic Theory Dynam. Systems, 2017, vol. 37, no. 2, pp. 512–538.spa
dcterms.bibliographicCitationGutman, Y., Qiao, Y., and Tsukamoto, M., Application of Signal Analysis to the Embedding Problem of -Actions, Geom. Funct. Anal., 2019, vol. 29, no. 5, pp. 1440–1502.spa
dcterms.bibliographicCitationHurley, M., On Proofs of the General Density Theorem, Proc. Amer. Math. Soc., 1996, vol. 124, no. 4, pp. 1305–1309.spa
dcterms.bibliographicCitationLindenstrauss, E. and Tsukamoto, M., Double Variational Principle for Mean Dimension, Geom. Funct. Anal., 2019, vol. 29, no. 4, pp. 1048–1109.spa
dcterms.bibliographicCitationLindenstrauss, E. and Tsukamoto, M., From Rate Distortion Theory to Metric Mean Dimension: Variational Principle, IEEE Trans. Inform. Theory, 2018, vol. 64, no. 5, pp. 3590–3609.spa
dcterms.bibliographicCitationLindenstrauss, E. and Weiss, B., Mean Topological Dimension, Israel J. Math., 2000, vol. 115, no. 1, pp. 1–24.spa
dcterms.bibliographicCitationLindenstrauss, E., Mean Dimension, Small Entropy Factors and an Embedding Theorem, Inst. Hautes Études Sci. Publ. Math., 1999, no. 89, pp. 227–262.spa
dcterms.bibliographicCitationLiu, Y., Selmi, B., and Li, Zh., On the Mean Fractal Dimensions of the Cartesian Product Sets, Chaos Solitons Fractals, 2024, vol. 180, Paper No. 114503, 9 pp.spa
dcterms.bibliographicCitationMa, X., Yang, J., and Chen, E., Mean Topological Dimension for Random Bundle Transformations, Ergodic Theory Dynam. Systems, 2019, vol. 39, no. 4, pp. 1020–1041.spa
dcterms.bibliographicCitationTsukamoto, M., Mean Dimension of Full Shifts, Israel J. Math., 2019, vol. 230, no. 1, pp. 183–193.spa
dcterms.bibliographicCitationTsukamoto, M., Mean Hausdorff Dimension of Some Infinite Dimensional Fractals, https://arxiv.org/abs/2209.00512 (2022).spa
dcterms.bibliographicCitationVelozo, A. and Velozo, R., Rate Distortion Theory, Metric Mean Dimension and Measure Theoretic Entropy, https://arxiv.org/abs/1707.05762 (2017).spa
dcterms.bibliographicCitationWalters, P., An Introduction to Ergodic Theory, Grad. Texts in Math., vol. 79, Berlin: Springer, 2000.spa
dcterms.bibliographicCitationYang, R., Chen, E., and Zhou, X., Bowen’s Equations for Upper Metric Mean Dimension with Potential, Nonlinearity, 2022, vol. 35, no. 9, pp. 4905–4938.spa
dcterms.bibliographicCitationYano, K., A Remark on the Topological Entropy of Homeomorphisms, Invent. Math., 1980, vol. 59, no. 3, pp. 215–220.spa
datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1134/S1560354724510014
dc.subject.keywordsMean dimensionspa
dc.subject.keywordsMetric mean dimensionspa
dc.subject.keywordsMean Hausdorff dimensionspa
dc.subject.keywordsHausdorff dimensionspa
dc.subject.keywordsTopological entropyspa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.