Mostrar el registro sencillo del ítem

dc.contributor.authorSierra Porta, David
dc.date.accessioned2024-03-04T13:01:43Z
dc.date.available2024-03-04T13:01:43Z
dc.date.issued2024-01-18
dc.date.submitted2024-02-04
dc.identifier.citationD. Sierra-Porta; Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques. Chaos 1 February 2024; 34 (2): 023114. https://doi.org/10.1063/5.0167156spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12645
dc.description.abstractCosmic rays are highly energetic particles originating from astrophysical events outside the Solar System. In this study, we analyze the time series of cosmic ray flux measured by neutron detectors at 16 monitoring stations distributed worldwide. By applying visibility graph analysis, we explore the relationship between the magnetic rigidity cutoff (Rc ) and the fractality exhibed from topology of the cosmic ray time series. Our results reveal a significant association between the magnetic rigidity cutoff and the fractality of the cosmic ray time series. Specifically, the analysis of visibility graphs and network properties demonstrates that the magnetic rigidity is inversely related to the magnetic rigidity cutoff. The identified relationship between magnetic rigidity and fractality provides insights into the chaotic nature of cosmic ray variations and their potential uses for predictability.spa
dc.format.extent7 pag
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceChaos: An Interdisciplinary Journal of Nonlinear Sciencespa
dc.titleRelationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniquesspa
dcterms.bibliographicCitationBlandford, R. and Eichler, D., “Particle acceleration at astrophysical shocks: A theory of cosmic ray origin,” Physics Reports 154, 1–75 (1987).spa
dcterms.bibliographicCitation2Blasi, P., “The origin of galactic cosmic rays,” The Astronomy and Astrophysics Review 21, 1–73 (2013).spa
dcterms.bibliographicCitation3Carslaw, K., Harrison, R., and Kirkby, J., “Cosmic rays, clouds, and climate,” science 298, 1732–1737 (2002).spa
dcterms.bibliographicCitationChu, W. and Qin, G., “The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions,” in Annales Geophysicae, Vol. 34 (Copernicus Publications Göttingen, Germany, 2016) pp. 45–53.spa
dcterms.bibliographicCitationDanilova, O., Ptitsyna, N., Tyasto, M., and Sdobnov, V., “The relationship of magnetospheric parameters with cosmic-ray cutoff rigidities depending on latitude,” Cosmic Research 61, 18–26 (2023).spa
dcterms.bibliographicCitationGao, Z.-K., Small, M., and Kurths, J., “Complex network analysis of time series,” Europhysics Letters 116, 50001 (2017).spa
dcterms.bibliographicCitationGleeson, L. and Axford, W., “Solar modulation of galactic cosmic rays,” Astrophysical Journal, vol. 154, p. 1011 154, 1011 (1968).spa
dcterms.bibliographicCitation8Goldstein, M. L., Morris, S. A., and Yen, G. G., “Problems with fitting to the power-law distribution,” The European Physical Journal B-Condensed Matter and Complex Systems 41, 255–258 (2004)spa
dcterms.bibliographicCitation9Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., and Stanley, H. E., “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A: Statistical Mechanics and its Applications 316, 87–114 (2002)spa
dcterms.bibliographicCitation0Kirkby, J., “Cosmic rays and climate,” Surveys in Geophysics 28, 333–375 (2007).spa
dcterms.bibliographicCitation1Lacasa, L. and Toral, R., “Description of stochastic and chaotic series using visibility graphs,” Physical Review E 82, 036120 (2010).spa
dcterms.bibliographicCitationLuque, B., Lacasa, L., Ballesteros, F., and Luque, J., “Horizontal visibility graphs: Exact results for random time series,” Physical Review E 80, 046103 (2009).spa
dcterms.bibliographicCitationMishev, A. and Usoskin, I., “Current status and possible extension of the global neutron monitor network,” Journal of Space Weather and Space Climate 10, 17 (2020).spa
dcterms.bibliographicCitationMoraal, H., Belov, A., and Clem, J., “Design and co-ordination of multistation international neutron monitor networks,” Space Science Reviews 93, 285–303 (2000)spa
dcterms.bibliographicCitation5Potgieter, M. S., “Solar modulation of cosmic rays,” Living Reviews in Solar Physics 10, 1–66 (2013).spa
dcterms.bibliographicCitationSierra-Porta, D., “Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23,” Astrophysics and Space Science 363, 1–5 (2018).spa
dcterms.bibliographicCitation7Sierra-Porta, D., “On the fractal properties of cosmic rays and sun dynamics cross-correlations,” Astrophysics and Space Science 367, 1–14 (2022).spa
dcterms.bibliographicCitationSierra-Porta, D. and Domínguez-Monterroza, A.-R., “Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis,” Physica A: Statistical Mechanics and its Applications 607, 128159 (2022).spa
dcterms.bibliographicCitation9Small, M., Walker, D. M., and Tse, C. K., “Scale-free distribution of avian influenza outbreaks,” Physical review letters 99, 188702 (2007).spa
dcterms.bibliographicCitation0Stanev, T., High energy cosmic rays (Springer Science & Business Media, 2010).spa
dcterms.bibliographicCitationStephen, M., Gu, C., and Yang, H., “Visibility graph based time series analysis,” PloS one 10, e0143015 (2015)spa
dcterms.bibliographicCitation2Usoskin, I. G. and Kovaltsov, G. A., “Cosmic rays and climate of the earth: Possible connection,” Comptes Rendus Geoscience 340, 441–450 (2008).spa
dcterms.bibliographicCitationZou, Y., Donner, R. V., Marwan, N., Donges, J. F., and Kurths, J., “Complex network approaches to nonlinear time series analysis,” Physics Reports 787, 1–97 (2019).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1063/5.0167156
dc.subject.keywordsEdge of chaosspa
dc.subject.keywordsGeographic locationspa
dc.subject.keywordsCosmic raysspa
dc.subject.keywordsSolar activityspa
dc.subject.keywordsSolar systemspa
dc.subject.keywordsNetwork analysisspa
dc.subject.keywordsNeutron detectorsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.