Mostrar el registro sencillo del ítem
Development of films based on chitosan, gelatin and collagen extracted from bocachico scales (Prochilodus magdalenae)
dc.contributor.author | Moreno-Ricardo, Maria A. | |
dc.contributor.author | Gomez-Contreras, Paula | |
dc.contributor.author | González-Delgado, Ángel Darío | |
dc.contributor.author | Hernandez-Fernandez, Joaquin | |
dc.contributor.author | Ortega-Toro, Rodrigo | |
dc.date.accessioned | 2024-02-16T13:12:06Z | |
dc.date.available | 2024-02-16T13:12:06Z | |
dc.date.issued | 2024-01-24 | |
dc.date.submitted | 2024-02-16 | |
dc.identifier.citation | Moreno-Ricardo, M. A., Gomez-Contreras, P., González-Delgado, Á. D., Hernandez-Fernandez, J., & Ortega-Toro, R. (2024). Development of films based on chitosan, gelatin and collagen extracted from bocachico scales (Prochilodus magdalenae). Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25194 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12638 | |
dc.description.abstract | Biodegradable biopolymers from species of the animal kingdom or their byproducts are sus tainable as ecological materials due to their abundant supply and compatibility with the envi ronment. The research aims to obtain a biodegradable active material from chitosan, gelatin, and collagen from bocachico scales (Prochilodus magdalenae). Regarding the methodology, films were developed from gelatin, chitosan, and collagen from bocachico scales (Prochilodus mag dalenae) at different concentrations using glycerol as a plasticizer and citric acid as a cross-linker. The films were obtained with the hydrated mass processed by compression molding and char acterized according to humidity, water solubility, contact angle, mechanical properties, and structural properties. The results of the films showed a hydrophobic characteristic. First, the chitosan-collagen (CS/CO) films showed a yellowish color, while the gelatin-collagen (Gel/CO) films were transparent and less soluble than the gelatin-collagen (Gel/CO) films. Concerning mechanical properties, gelatin films showed higher stiffness and tensile strength than chitosan films. Furthermore, in the morphological analysis, more homogeneous chitosan films were ob tained by increasing the concentration of citric acid. In general, chitosan, gelatin, and collagen extracted from the scales of the bocachico (Prochilodus magdalenae) are an alternative in the application of films in the food industry. | spa |
dc.format.extent | 10 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Heliyon | spa |
dc.title | Development of films based on chitosan, gelatin and collagen extracted from bocachico scales (Prochilodus magdalenae) | spa |
dcterms.bibliographicCitation | S. Punia, W. Scott, W.F. Ozogul, K. Dunno, D. Armstrong, G, P. Dawson, Development of starch-based films reinforced with cellulosic nanocrystals and essential oil to extend the shelf life of red grapes, Food Biosci. 47 (2022) 101621, https://doi.org/10.1016/j.fbio.2022.101621. | spa |
dcterms.bibliographicCitation | E. Shlush, M. Davidovich-Pinhas, Bioplastics for food packaging, Trends Food Sci. Technol. 125 (2022) 66–80, https://doi.org/10.1016/j.tifs.2022.04.026. | spa |
dcterms.bibliographicCitation | F. Kjaerulf, B. Lee, L. Cohen, La agenda 2030 para el desarrollo sostenible: una oportunidad de oro para la prevencion ´ de la violencia global, Int J Public Health 61 (2016) 863–864, https://doi.org/10.1007/s00038-016-0887-8 | spa |
dcterms.bibliographicCitation | A.L.V. Cubas, R.T. Bianchet, I.M.A.S.D. Reis, I.C. Gouveia, Plastics and microplastic in the cosmetic industry: aggregating sustainable actions aimed at alignment and interaction with UN sustainable development goals, Polymers 14 (2022) 4576, https://doi.org/10.3390/polym14214576. | spa |
dcterms.bibliographicCitation | S. Roy, R. Priyadarshi, P. Ezati, J.W. Rhim, Curcumin and its uses in active and smart food packaging applications - a comprehensive review, Food Chem. 375 (2022) 131885, https://doi.org/10.1016/j.foodchem.2021.131885 | spa |
dcterms.bibliographicCitation | F. Wang, C. Xie, H. Tang, W. Hao, J. Wu, Y. Sun, J. Sun, Y. Liu, L. Jiang, Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins, Food Hydrocoll 139 (2023) 108496, https://doi.org/10.1016/j.foodhyd.2023.108496. | spa |
dcterms.bibliographicCitation | M. Andonegi, D. M Correia, C. M Costa, S. Lanceros-Mendez, K. De la Caba, P. Guerrero, Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications, Polymer 252 (2022) 124943, https://doi.org/10.1016/j.polymer.2022.124943. | spa |
dcterms.bibliographicCitation | E. Moreira, C. Dellinghausen, A. Dos Santos, J. Pinsetta, B.H. Mattiuz, S. Santos, Conservation of red guava ’Pedro Sato’ using chitosan and gelatin-based coatings produced by the layer-by-layer technique, Process Biochem 121 (2022) 35–44, https://doi.org/10.1016/j.procbio.2022.06.020. | spa |
dcterms.bibliographicCitation | X. Zhang, J. Liu, H. Yong, Y. Qin, J. Liu, C. Jin, Development of antioxidant and antimicrobial packaging films based on chitosan and mangosteen (Garcinia mangostana L.) rind powder, Int. J. Biol. Macromol. 145 (2020) 1129–1139, https://doi.org/10.1016/j.ijbiomac.2019.10.038 | spa |
dcterms.bibliographicCitation | H. Cui, M. Bai, M. Rashed, L. Lin, The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber, Int. J. Food Microbio. 266 (2018) 69–78, https://doi.org/10.1016/j.ijfoodmicro.2017.11.019. | spa |
dcterms.bibliographicCitation | L. Lin, Y. Gu, H. Cui, Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese, Food Packag. Shelf Life 19 (2019) 86–93, https://doi.org/10.1016/j.fpsl.2018.12.005 | spa |
dcterms.bibliographicCitation | A. Amato, L. Migneco, A. Martinelli, L. Pietrelli, A. Piozzi, I. Francolini, Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis, Carbohydr. Polym. (2018) 273–281, https://doi.org/10.1016/j.carbpol.2017.09.073. | spa |
dcterms.bibliographicCitation | A. Cano, C. Contreras, A. Chiralt, C. Gonz´ alez-Martínez, Using tannins as active compounds to develop antioxidant and antimicrobial chitosan and cellulose based films, Carbohydrates Polymer Technologies and Applications 2 (2021) 100156, https://doi.org/10.1016/j.carpta.2021.100156. | spa |
dcterms.bibliographicCitation | M. Ogawa, R.J. Portier, M.W. Moody, J. Bell, M. A Schexnayder, J.N. Losso, Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonia cromis) and sheepshead seabream (Archosargus probatocephalus), Food Chem. 88 (2004) 495–501, https://doi.org/10.1016/j. foodchem.2004.02.006. [15] T. Qiang, I. Chen, Z. Yan, X. Liu, Evaluation of a novel collagenous matrix membrane cross-linked with catechins catalyzed by laccase: a sustainable biomass, J. Agric. Food Chem. 67 (2019) 1504–1512, https://doi.org/10.1021/acs.jafc.8b05810. | spa |
dcterms.bibliographicCitation | T. Zheng, P. Tang, G. Li, Effects of chitosan molecular weight and deacetylation degree on the properties of collagen-chitosan composite films for food packaging, J. Appl. Polym. Sci. 139 (2022) 41, https://doi.org/10.1002/app.52995. | spa |
dcterms.bibliographicCitation | T. Zheng, P. Tang, G. Li, Development of composite film based on collagen and phenolic acid-grafted chitosan for food packaging, Int. J. Biol. Macromol. (2023), https://doi.org/10.1016/j.fbio.2020.100871. | spa |
dcterms.bibliographicCitation | H. Wang, F. Ding, L. Ma, Y. Zhang, Edible films from chitosan-gelatin: physical properties and food packaging Application, Food Biosci. (2021), https://doi.org/ 10.1016/j.fbio.2020.100871. | spa |
dcterms.bibliographicCitation | U. Jaramillo–Villa, L.F. Jim´enez–Segura, Algunos aspectos biologicos ´ de la poblacion ´ de Prochilodus magdalenae en las ci´enagas de Tumarado ´ (río Atrato), Colombia, Actu. Biol. 30 (2008). https://www.researchgate.net/publication/317511640. | spa |
dcterms.bibliographicCitation | J. Quintero, J. Zapata, Optimizacion ´ de la extraccion ´ del col´ ageno soluble en acido ´ de subproductos de tilapia roja (Oreochromis spp) mediante un diseno ˜ de superficie de respuesta, Inf. Tecnol. 28 (2017) 109–120, https://doi.org/10.4067/S0718-07642017000100011. | spa |
dcterms.bibliographicCitation | P. Guerrero, A. Muxika, I. Zarandona, K. De la Caba, Crosslinking of chitosan films processed by compression molding, Carbohydr. Polym. 206 (2019) 820–826, https://doi.org/10.1016/j.carbpol.2018.11.064. | spa |
dcterms.bibliographicCitation | American Society for Testing and Materials, ASTM D523, Standard Test Method for Specular Gloss, ASTM, 1999, pp. 523–589. | spa |
dcterms.bibliographicCitation | American Society for Testing and Materials, in: ASTM E96-95, Standard Test Methods for Water Vapor Transmission of Materials, ASTM, 1995, pp. 406–413. | spa |
dcterms.bibliographicCitation | American Society for Testing and Materials, ASTM D882, Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM, 2001, 2001. | spa |
dcterms.bibliographicCitation | C. Toniciolli, M. Rosseto, M. Alessandretti, R. Oliveira, D. Raber, J. Ferreira, R. Aparecida, A. Dettmer, I. Pizzutti, Gelatin films from wastes: a review of production, characterization, and application trends in food preservation and agriculture, Food Res. Int. 162 (2022) 112114, https://doi.org/10.1016/j. foodres.2022.112114 | spa |
dcterms.bibliographicCitation | A. Cano, M. Ch´ afer, A. Chiralt, Ch Gonzalez, ´ Physical and microstructural properties of biodegradable films based on pea starch and PVA, J. Food Eng. (2015) 59–64, https://doi.org/10.1016/j.jfoodeng.2015.06.003. | spa |
dcterms.bibliographicCitation | Y. Qin, D. Yun, F. Xu, D. Chen, J. Kan, J. Liu, Smart packaging films based on starch/polyvinyl alcohol and Lycium ruthenicum anthocyanins-loaded nano complexes: functionality, stability, and Application, Food Hydrocoll (2021), https://doi.org/10.1016/j.foodhyd.2021.106850 | spa |
dcterms.bibliographicCitation | M. Tagrida, K. Nilsuwan, S. Gulzar, T. Prodpran, T. Benjakul, Fish gelatin/chitosan blend films incorporated with betel (Piper betle L.) leaf ethanolic extracts: characteristics, antioxidant and antimicrobial properties, Food Hydrocoll 137 (2023) 108316, https://doi.org/10.1016/j.foodhyd.2022.108316 | spa |
dcterms.bibliographicCitation | ] K. Thongchai, P. Chuysinuan, T. Thanyacharoen, S. Techasakul, S. Ummartyotin, Integration of collagen into chitosan blend film composites: physicochemical property aspects for pharmaceutical material, SN Appl. Sci. 2 (2020) 255, https://doi.org/10.1007/s42452-020-2052-5. | spa |
dcterms.bibliographicCitation | H. Wang, F. Ding, L. Ma, Y. Zhang, Edible films from chitosan-gelatin: physical properties and food packaging application, Food Biosci. 40 (2021) 100871, https://doi.org/10.1016/j.fbio.2020.100871. | spa |
dcterms.bibliographicCitation | ] S. Yadav, G. Mehrotra, P. Bhartiya, A. Singh, P.K. Dutta, Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging, Carbohydr. Polym. 227 (2020) 115348, https://doi.org/10.1016/j.carbpol.2019.115348. | spa |
dcterms.bibliographicCitation | M. Rezaee, G. Askari, Z. EmamDjomeh, M. Salami, Effect of organic additives on physiochemical properties and anti-oxidant release from chitosan-gelatin composite films to fatty food simulant, J. Biol. Macromol. 114 (2018) 844–850, https://doi.org/10.1016/j.ijbiomac.2018.03.122 | spa |
dcterms.bibliographicCitation | J. Xiao, Y. Ma, W. Wang, K. Zhang, X. Tian, K. Zhao, Y. Guo, Incorporation of gelatin improves toughness of collagen films with a homo-hierarchical structure, Food Chem. 345 (2021) 128802, https://doi.org/10.1016/j.foodchem.2020.128802. | spa |
dcterms.bibliographicCitation | S. Vedovatto, J.C. Facchini, R.K. Batista, T.C. Paim, M.I.Z. Lionzo, M.R. Wink, Development of chitosan, gelatin and liposome film and analysis of its biocompatibility in vitro, J. Biol. Macromol. 160 (2020) 750–757, https://doi.org/10.1016/j.ijbiomac.2020.05.229 | spa |
dcterms.bibliographicCitation | Y. Chen, Q. Duan, L. Yu, F. Xie, F, Thermomechanically processed chitosan: transparent, mechanically robust and less hygroscopic gelatin films, Carbohy. Polym. 272 (2021) 118522, https://doi.org/10.1016/j.carbpol.2021.118522 | spa |
dcterms.bibliographicCitation | ] M.C. Giannakourou, T.N. Tsironi, Application of processing and packaging hurdles for fresh-cut fruits and vegetables preservation, Foods 10 (4) (2021) 830, https://doi.org/10.3390/foods10040830. | spa |
dcterms.bibliographicCitation | G. Bishop, D. Styles, P.N. Lens, Environmental performance of bioplastic packaging on fresh food produce: a consequential life cycle assessment, J. Clean. Prod. 317 (2021) 128377, https://doi.org/10.1016/j.jclepro.2021.128377 | spa |
dcterms.bibliographicCitation | ] M. Ahmed, A.K. Verma, R. Patel, Physiochemical, antioxidant, and food simulant release properties of collagen-carboxymethyl cellulose films enriched with Berberis lyceum root extract for biodegradable active food packaging, J. Food Process. Preserv. 46 (4) (2022) 16485, https://doi.org/10.1111/jfpp.16485. | spa |
dcterms.bibliographicCitation | L.E. Guzman, ´ D. Acevedo, L. Romero, J. Estrada, Elaboracion ´ de una película comestible a base de colageno ´ incorporado con nisina como agente antimicrobiano, Inf. Tec. 26 (3) (2015) 17–24, https://doi.org/10.4067/S0718-07642015000300004. | spa |
dcterms.bibliographicCitation | S. Kumar, A. Mukherjee, J. Dutta, Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives, Trends Food Sci. Technol. 97 (2020) 196–209, https://doi.org/10.1016/j.tifs.2020.01.002. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1016/j.heliyon.2024.e25194 | |
dc.subject.keywords | Biocompatibility | spa |
dc.subject.keywords | Compression molding | spa |
dc.subject.keywords | Hydrophobic | spa |
dc.subject.keywords | Rigidity | spa |
dc.subject.keywords | Citric acid | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.