Mostrar el registro sencillo del ítem

dc.contributor.authorSanchez, Sergio
dc.contributor.authorQuintero, Fernando
dc.contributor.authorMendoza, Kevin
dc.contributor.authorPrada, Prada
dc.contributor.authorTello, Alejandro
dc.contributor.authorGalvis, Virgilio
dc.contributor.authorRomero, Lenny A
dc.contributor.authorMarrugo, Andres G
dc.contributor.otherMendoza, Kevin
dc.date.accessioned2024-02-12T19:17:55Z
dc.date.available2024-02-12T19:17:55Z
dc.date.issued2023
dc.date.submitted2024
dc.identifier.citationSánchez, S., Mendoza, K., Quintero, F. J., Prada, A. M., Tello, A., Galvis, V., Romero, L. A., & Marrugo, A. G. (2023). Self-supervised deep-learning segmentation of corneal endothelium specular microscopy images. 2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), 1–5.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12633
dc.description.abstractComputerized medical evaluation of the corneal endothelium is challenging because it requires costly equipment and specialized personnel, not to mention that conventional techniques require manual annotations that are difficult to acquire. This study aims to obtain reliable segmentations without requiring large data sets labeled by expert personnel. To address this problem, we use the Barlow Twins approach to pre-train the encoder of a UNet model in an unsupervised manner. Then, with few labeled data, we train the segmentation. Encouraging results show that it is possible to address the challenge of limited data availability using self-supervised learning. This model achieved a precision of 86\%, obtaining a satisfactory performance. Using many images to learn good representations and a few labeled images to learn the semantic segmentation task is feasible.spa
dc.description.sponsorshipMincienciasspa
dc.format.extent14 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.source2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)spa
dc.titleSelf-supervised Deep-Learning Segmentation of Corneal Endothelium Specular Microscopy Imagesspa
dcterms.bibliographicCitationJeang, L.J., Margo, C.E., Espana, E.M.: Diseases of the corneal endothelium. Experimental eye research 205, 108495 (2021)spa
dcterms.bibliographicCitationCatala, P., Thuret, G., Skottman, H., Mehta, J.S., Parekh, M., Dhubhghaill, S.N., Collin, R.W., Nuijts, R.M., Ferrari, S., LaPointe, V.L., et al.: Approaches for corneal endothelium regenerative medicine. Progress in retinal and eye research 87, 100987 (2022)spa
dcterms.bibliographicCitationSierra, J.S., Pineda, J., Rueda, D., Tello, A., Prada, A.M., Galvis, V., Volpe, G., Millan, M.S., Romero, L.A., Marrugo, A.G.: Corneal endothelium assessment in specular microscopy images with fuchs’ dystrophy via deep regression of signed distance maps. Biomedical optics express 14(1), 335–351 (2023)spa
dcterms.bibliographicCitationKnauer, C., Pfeiffer, N.: The value of vision. Graefe’s Archive for Clinical and Experimental Ophthalmology 246, 477–482 (2008)spa
dcterms.bibliographicCitationHuang, J., Maram, J., Tepelus, T.C., Sadda, S.R., Chopra, V., Lee, O.L.: Com parison of noncontact specular and confocal microscopy for evaluation of corneal endothelium. Eye & Contact Lens: Science & Clinical Practice 44, 144–150 (2017)spa
dcterms.bibliographicCitationPrice, M.O., Fairchild, K.M., Price, F.W.: Comparison of manual and automated endothelial cell density analysis in normal eyes and dsek eyes. Cornea 32(5), 567–573 (2013) https://doi.org/10.1097/ico.0b013e31825de8faspa
dcterms.bibliographicCitationLuft, N., Hirnschall, N., Schuschitz, S., Draschl, P., Findl, O.: Compari son of 4 specular microscopes in healthy eyes and eyes with cornea guttata or corneal grafts. Cornea 34(4), 381–386 (2015) https://doi.org/10.1097/ico. 0000000000000385spa
dcterms.bibliographicCitationGasser, L., Reinhard, T., B¨ohringer, D.: Comparison of corneal endothelial cell measurements by two non-contact specular microscopes. BMC ophthalmology 15, 87 (2015) https://doi.org/10.1186/s12886-015-0068-1spa
dcterms.bibliographicCitationSelig, B., Vermeer, K., Rieger, B., Hillenaar, T., Luengo Hendriks, C.: Fully auto matic evaluation of the corneal endothelium from in vivo confocal microscopy. BMC medical imaging 15, 13 (2015) https://doi.org/10.1186/s12880-015-0054-3spa
dcterms.bibliographicCitationShilpashree, P., Kaggere, S., Sudhir, R., Srinivas, S.: Automated image segmen tation of the corneal endothelium in patients with fuchs dystrophy. Translational Vision Science & Technology 10, 27 (2021) https://doi.org/10.1167/tvst.10.13.27spa
dcterms.bibliographicCitationDaniel, M., Atzrodt, L., Bucher, F., Wacker, K., B¨ohringer, S., Reinhard, T., B¨ohringer, D.: Automated segmentation of the corneal endothelium in a large set of ‘real-world’ specular microscopy images using the u-net architecture. Scientific Reports 9 (2019) https://doi.org/10.1038/s41598-019-41034-2spa
dcterms.bibliographicCitationVigueras-Guill´en, J., Rooij, J., Dooren, B., Lemij, H., Islamaj, E., Van Vliet, L., Vermeer, K.: Denseunets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae. Scientific Reports 12 (2022) https://doi.org/10.1038/s41598-022-18180-1spa
dcterms.bibliographicCitationCaron, M., Touvron, H., Misra, I., J´egou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging Properties in Self-Supervised Vision Transformers (2021)spa
dcterms.bibliographicCitationZbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320 (2021). PMLRspa
dcterms.bibliographicCitationPunn, N.S., Agarwal, S.: Bt-unet: A self-supervised learning framework for biomedical image segmentation using barlow twins with u-net models. Machine Learning 111(12), 4585–4600 (2022)spa
dcterms.bibliographicCitationJiao, R., Zhang, Y., Ding, L., Cai, R., Zhang, J.: Learning with Limited Annotations: A Survey on Deep Semi-Supervised Learning for Medical Image Segmentation (2022)spa
dcterms.bibliographicCitationBalestriero, R., LeCun, Y.: Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods (2022)spa
dcterms.bibliographicCitationGrill, J.-B., Strub, F., Altch´e, F., Tallec, C., Richemond, P.H., Buchatskaya, E., Doersch, C., Pires, B.A., Guo, Z.D., Azar, M.G., Piot, B., Kavukcuoglu, K., Munos, R., Valko, M.: Bootstrap your own latent: A new approach to self-supervised Learning (2020)spa
dcterms.bibliographicCitationLiu, C., Amodio, M., Shen, L.L., Gao, F., Avesta, A., Aneja, S., Wang, J.C., Priore, L.V.D., Krishnaswamy, S.: CUTS: A Fully Unsupervised Framework for Medical Image Segmentation (2023spa
dcterms.bibliographicCitationFelfeliyan, B., Hareendranathan, A., Kuntze, G., Cornell, D., Forkert, N.D., Jaremko, J.L., Ronsky, J.L.: Self-Supervised-RCNN for Medical Image Segmen tation with Limited Data Annotation (2022)spa
dcterms.bibliographicCitationRonneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed ical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241 (2015). Springerspa
dcterms.bibliographicCitationMarsocci, V., Scardapane, S.: Continual barlow twins: Continual self-supervised learning for remote sensing semantic segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 16, 5049–5060 (2023) https://doi.org/10.1109/JSTARS.2023.3280029spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doiDOI: 10.1109/ColCACI59285.2023.10226148
dc.subject.keywordsTrainingspa
dc.subject.keywordsSemantic segmentationspa
dc.subject.keywordsMicroscopyspa
dc.subject.keywordsSelf-supervised learningspa
dc.subject.keywordsData modelsspa
dc.subject.keywordsPersonnelspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.