Mostrar el registro sencillo del ítem

dc.contributor.authorMuentes Acevedo, Jeovanny de Jesus
dc.contributor.authorRomaña Ibarra, Sergio
dc.contributor.authorArias Cantillo, Raibel
dc.date.accessioned2024-02-12T15:47:28Z
dc.date.available2024-02-12T15:47:28Z
dc.date.issued2023-12-10
dc.date.submitted2024-02-12
dc.identifier.citationAcevedo, J.M., Romaña, S. & Arias, R. Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-023-10344-5spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12632
dc.description.abstractLet N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N). Furthermore, we also give a proof that the set of homeomorphisms withupper metric mean dimension equal to n is residual in Hom(N).spa
dc.format.extent14 páginas
dc.format.mimetypeapplication/httpspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceJournal of Dynamics and Differential Equationsspa
dc.titleDensity of the level sets of the metric mean dimension for homeomorphismsspa
dcterms.bibliographicCitationAcevedo, J.M., Romaña, S., Arias, R.: Hölder continuous maps on the interval with positive metric mean dimension. Rev. Colomb. de Math. 57, 57–76 (2024)spa
dcterms.bibliographicCitationAcevedo, J.M.: Genericity of continuous maps with positive metric mean dimension. RM 77(1), 2 (2022)spa
dcterms.bibliographicCitationAcevedo, J.M., Baraviera, A., Becker, A.J., Scopel É.: Metric mean dimension and mean Hausdorff dimension varying the metric. (2024)spa
dcterms.bibliographicCitationArtin M., Mazur B.: On periodic points. Ann. Math. pp. 82-99 (1965)spa
dcterms.bibliographicCitationCarvalho, M., Rodrigues, F.B., Varandas, P.: Generic homeomorphisms have full metric mean dimension. Ergodic Theory Dynam. Syst. 42(1), 40–64 (2022)spa
dcterms.bibliographicCitationGutman, Y., Tsukamoto, M.: Embedding minimal dynamical systems into Hilbert cubes. Invent. Math. 221(1), 113–166 (2020)spa
dcterms.bibliographicCitationHurley, M.: On proofs of the general density theorem. Proceed. Amer. Math. Soci. 124(4), 1305–1309 (1996)spa
dcterms.bibliographicCitationLindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000)spa
dcterms.bibliographicCitationLindenstrauss, E., Tsukamoto, M.: Double variational principle for mean dimension. Geom. Funct. Anal. 29(4), 1048–1109 (2019)spa
dcterms.bibliographicCitationLindenstrauss, E., Tsukamoto, M.: From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inf. Theory 64(5), 3590–3609 (2018)spa
dcterms.bibliographicCitationLindenstrauss, E., Tsukamoto, M.: Mean dimension and an embedding problem: an example. Israel J. Math. 199(2), 573–584 (2014)spa
dcterms.bibliographicCitationShinoda, M., Tsukamoto, M.: Symbolic dynamics in mean dimension theory. Ergodic Theory Dynam. Syst. 41(8), 2542–2560 (2021)spa
dcterms.bibliographicCitationTsukamoto, M.: Mean dimension of full shifts. Israel J. Math. 230, 183–193 (2019)spa
dcterms.bibliographicCitationVelozo A., Velozo R.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv preprint arXiv:1707.05762 (2017)spa
dcterms.bibliographicCitationYano, K.: A remark on the topological entropy of homeomorphisms. Invent. Math. 59(3), 215–220 (1980)spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.1007/s10884-023-10344-5
dc.subject.keywordsMean dimensionspa
dc.subject.keywordsMetric mean dimensionspa
dc.subject.keywordsTopological entropyspa
dc.subject.keywordsGenericityspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.