Mostrar el registro sencillo del ítem
Density of the level sets of the metric mean dimension for homeomorphisms
dc.contributor.author | Muentes Acevedo, Jeovanny de Jesus | |
dc.contributor.author | Romaña Ibarra, Sergio | |
dc.contributor.author | Arias Cantillo, Raibel | |
dc.date.accessioned | 2024-02-12T15:47:28Z | |
dc.date.available | 2024-02-12T15:47:28Z | |
dc.date.issued | 2023-12-10 | |
dc.date.submitted | 2024-02-12 | |
dc.identifier.citation | Acevedo, J.M., Romaña, S. & Arias, R. Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-023-10344-5 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12632 | |
dc.description.abstract | Let N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N). Furthermore, we also give a proof that the set of homeomorphisms withupper metric mean dimension equal to n is residual in Hom(N). | spa |
dc.format.extent | 14 páginas | |
dc.format.mimetype | application/http | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Journal of Dynamics and Differential Equations | spa |
dc.title | Density of the level sets of the metric mean dimension for homeomorphisms | spa |
dcterms.bibliographicCitation | Acevedo, J.M., Romaña, S., Arias, R.: Hölder continuous maps on the interval with positive metric mean dimension. Rev. Colomb. de Math. 57, 57–76 (2024) | spa |
dcterms.bibliographicCitation | Acevedo, J.M.: Genericity of continuous maps with positive metric mean dimension. RM 77(1), 2 (2022) | spa |
dcterms.bibliographicCitation | Acevedo, J.M., Baraviera, A., Becker, A.J., Scopel É.: Metric mean dimension and mean Hausdorff dimension varying the metric. (2024) | spa |
dcterms.bibliographicCitation | Artin M., Mazur B.: On periodic points. Ann. Math. pp. 82-99 (1965) | spa |
dcterms.bibliographicCitation | Carvalho, M., Rodrigues, F.B., Varandas, P.: Generic homeomorphisms have full metric mean dimension. Ergodic Theory Dynam. Syst. 42(1), 40–64 (2022) | spa |
dcterms.bibliographicCitation | Gutman, Y., Tsukamoto, M.: Embedding minimal dynamical systems into Hilbert cubes. Invent. Math. 221(1), 113–166 (2020) | spa |
dcterms.bibliographicCitation | Hurley, M.: On proofs of the general density theorem. Proceed. Amer. Math. Soci. 124(4), 1305–1309 (1996) | spa |
dcterms.bibliographicCitation | Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000) | spa |
dcterms.bibliographicCitation | Lindenstrauss, E., Tsukamoto, M.: Double variational principle for mean dimension. Geom. Funct. Anal. 29(4), 1048–1109 (2019) | spa |
dcterms.bibliographicCitation | Lindenstrauss, E., Tsukamoto, M.: From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inf. Theory 64(5), 3590–3609 (2018) | spa |
dcterms.bibliographicCitation | Lindenstrauss, E., Tsukamoto, M.: Mean dimension and an embedding problem: an example. Israel J. Math. 199(2), 573–584 (2014) | spa |
dcterms.bibliographicCitation | Shinoda, M., Tsukamoto, M.: Symbolic dynamics in mean dimension theory. Ergodic Theory Dynam. Syst. 41(8), 2542–2560 (2021) | spa |
dcterms.bibliographicCitation | Tsukamoto, M.: Mean dimension of full shifts. Israel J. Math. 230, 183–193 (2019) | spa |
dcterms.bibliographicCitation | Velozo A., Velozo R.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv preprint arXiv:1707.05762 (2017) | spa |
dcterms.bibliographicCitation | Yano, K.: A remark on the topological entropy of homeomorphisms. Invent. Math. 59(3), 215–220 (1980) | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | https://doi.org/10.1007/s10884-023-10344-5 | |
dc.subject.keywords | Mean dimension | spa |
dc.subject.keywords | Metric mean dimension | spa |
dc.subject.keywords | Topological entropy | spa |
dc.subject.keywords | Genericity | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.