Mostrar el registro sencillo del ítem
Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
dc.contributor.author | Velilla-Díaz, Wilmer | |
dc.contributor.author | Guillén-Rujano, Renny | |
dc.contributor.author | Pérez-Ruiz, José David | |
dc.contributor.author | López de Lacalle, Luis Norberto, | |
dc.contributor.author | Palencia, Argemiro | |
dc.contributor.author | Maury, Heriberto | |
dc.contributor.author | Zambrano, Habib R. | |
dc.date.accessioned | 2024-02-01T20:28:01Z | |
dc.date.available | 2024-02-01T20:28:01Z | |
dc.date.issued | 2024-02-01 | |
dc.date.submitted | 2024-02-01 | |
dc.identifier.citation | Velilla-Díaz, Wilmer, Roger Pinzón, Renny Guillén-Rujano, José David Pérez-Ruiz, Luis Norberto López de Lacalle, Argemiro Palencia, Heriberto Maury, and Habib R. Zambrano. 2024. "Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique" Metals 14, no. 2: 182. https://doi.org/10.3390/met14020182 | spa |
dc.identifier.issn | 2075-4701 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12602 | |
dc.description.abstract | Fatigue crack growth tests are conducted to assess the efficacy of the stop-hole crack repair method. This straightforward and widely adopted technique involves drilling a hole at the crack tip and subsequently enlarging it using a pin inserted into the hole. A fracture mechanics-based model is proposed to estimate the extension of fatigue life achieved through the implementation of the stop-hole technique. The model’s predictions are validated using data obtained from fatigue crack growth tests conducted on both unrepaired and repaired M(T) specimens, following the guidelines outlined in the ASTM E647 standard. The error of the fracture mechanics-based model was 1.4% in comparison with the fatigue tests. | spa |
dc.format.extent | 16 Paginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Metals | spa |
dc.title | Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique | spa |
dcterms.bibliographicCitation | Yousefi, A.; Jolaiy, S.; Hedayati, R.; Serjouei, A.; Bodaghi, M. Fatigue Life Improvement of Cracked Aluminum 6061-T6 Plates Repaired by Composite Patches. Materials 2021, 14, 1421. https://doi.org/10.3390/ma14061421. | spa |
dcterms.bibliographicCitation | Liu, X.; Wu, J.; Xi, J.; Yu, Z. Bonded Repair Optimization of Cracked Aluminum Alloy Plate by Microwave Cured Carbon- Aramid Fiber/Epoxy Sandwich Composite Patch. Materials 2019, 12, 1655. https://doi.org/10.3390/ma12101655. | spa |
dcterms.bibliographicCitation | Aabid, A.; Hrairi, M.; Ali, J.S.M.; Sebaey, T.A. A Review on Reductions in the Stress-Intensity Factor of Cracked Plates Using Bonded Composite Patches. Materials 2022, 15, 3086. https://doi.org/10.3390/ma15093086. | spa |
dcterms.bibliographicCitation | Chao Lu, Y.; Peng Yang, F.; Chen, T.; Gong, H. The retardation effect of combined application of stop-hole and overload on sheet steel. Int. J. Fatigue 2020, 132, 105414. https://doi.org/10.1016/j.ijfatigue.2019.105414. | spa |
dcterms.bibliographicCitation | Yao, Y.; Ji, B.; Fu, Z.; Zhou, J.; Wang, Y. Optimization of stop-hole parameters for cracks at diaphragm-to-rib weld in steel bridges. J. Constr. Steel Res. 2019, 162, 105747. https://doi.org/10.1016/j.jcsr.2019.105747. | spa |
dcterms.bibliographicCitation | Jiang, X.; Lv, Z.; Qiang, X.; Zhang, J. Improvement of Stop-Hole Method on Fatigue-Cracked Steel Plates by Using High-Strength Bolts and CFRP Strips. Adv. Civ. Eng. 2021, 2021, 6632212. https://doi.org/10.1155/2021/6632212. | spa |
dcterms.bibliographicCitation | Razavi, S.M.J.; Ayatollahi, M.R.; Sommitsch, C.; Moser, C. Retardation of fatigue crack growth in high strength steel S690 using a modified stop-hole technique. Eng. Fract. Mech. 2017, 169, 226–237. https://doi.org/10.1016/j.engfracmech.2016.11.013. | spa |
dcterms.bibliographicCitation | Ayatollahi, M.R.; Razavi, S.M.J.; Yahya, M.Y. Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique. Eng. Fract. Mech. 2015, 145, 115–127. https://doi.org/10.1016/j.engfracmech.2015.03.027. | spa |
dcterms.bibliographicCitation | Deng, Q.; Yin, X.; Wang, D.; Abdel Wahab, M. Numerical analysis of crack propagation in fretting fatigue specimen repaired by stop hole method. Int. J. Fatigue 2022, 156, 106640. https://doi.org/10.1016/j.ijfatigue.2021.106640. | spa |
dcterms.bibliographicCitation | Taghizadeh, H.; Chakherlou, T.; Ghorbani, H.; Mohammadpour, A. Prediction of fatigue life in cold expanded fastener holes subjected to bolt tightening in Al alloy 7075-T6 plate. Int. J. Mech. Sci. 2015, 90, 6–15. https://doi.org/10.1016/j.ijmecsci.2014.10.026. | spa |
dcterms.bibliographicCitation | Takahashi, I. A simple repair method of fatigue cracks using stop-holes reinforced with wedge members: Applicability to reinitiated cracks and effects of an anti-fatigue smart paste. Weld. Int. 2020, 34, 267–287. https://doi.org/10.1080/09507116.2021.1915567. | spa |
dcterms.bibliographicCitation | Branco, C.; Infante, V.; Baptista, R. Fatigue behaviour of welded joints with cracks, repaired by hammer peening. Fatigue Fract. Eng. Mater. Struct. 2004, 27, 785–798. https://doi.org/10.1111/j.1460-2695.2004.00777.x. | spa |
dcterms.bibliographicCitation | Tai, M.; Miki, C. Fatigue strength improvement by hammer peening treatment—Verification from plastic deformation, residual stress, and fatigue crack propagation rate. Weld. World 2014, 58, 307–318. https://doi.org/10.1007/s40194-014-0115-1. | spa |
dcterms.bibliographicCitation | Tai, M.; Miki, C. Improvement effects of fatigue strength by burr grinding and hammer peening under variable amplitude loading. Weld. World 2012, 56, 109–117. https://doi.org/10.1007/BF03321370. | spa |
dcterms.bibliographicCitation | Baker, A.; Jones, R. Bonded Repair of Aircraft Structures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988; Volume 7. https://doi.org/10.1007/978-94-009-2752-0_7. | spa |
dcterms.bibliographicCitation | Marazani, T.; Madyira, D.M.; Akinlabi, E.T. Repair of cracks in metals: A review. Procedia Manuf. 2017, 8, 673–679. https://doi.org/10.1016/j.promfg.2017.02.086. | spa |
dcterms.bibliographicCitation | Lozano, C.M.; Riveros, G.A. Effects of Adhesive Bond-Slip Behavior on the Capacity of Innovative FRP Retrofits for Fatigue and Fracture Repair of Hydraulic Steel Structures. Materials 2019, 12, 1495. https://doi.org/10.3390/ma12091495. | spa |
dcterms.bibliographicCitation | Song, P.; Shieh, Y. Stop drilling procedure for fatigue life improvement. Int. J. Fatigue 2004, 26, 1333–1339. https://doi.org/10.1016/j.ijfatigue.2004.04.009. | spa |
dcterms.bibliographicCitation | Wu, H.; Imad, A.; Benseddiq, N.; de Castro, J.T.P.; Meggiolaro, M.A. On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method. Int. J. Fatigue 2010, 32, 670–677. https://doi.org/10.1016/j.ijfatigue.2009.09.011. | spa |
dcterms.bibliographicCitation | Schubbe, J.J.; Bolstad, S.H.; Reyes, S. Fatigue crack growth behavior of aerospace and ship-grade aluminum repaired with composite patches in a corrosive environment. Compos. Struct. 2016, 144, 44–56. https://doi.org/10.1016/j.compstruct.2016.01.107. | spa |
dcterms.bibliographicCitation | Errouane, H.; Sereir, Z.; Chateauneuf, A. Numerical model for optimal design of composite patch repair of cracked aluminum plates under tension. Int. J. Adhes. Adhes. 2014, 49, 64–72. https://doi.org/10.1016/j.ijadhadh.2013.12.004. | spa |
dcterms.bibliographicCitation | Zarrinzadeh, H.; Kabir, M.; Deylami, A. Experimental and numerical fatigue crack growth of an aluminium pipe repaired by composite patch. Eng. Struct. 2017, 133, 24–32. https://doi.org/10.1016/j.engstruct.2016.12.011. | spa |
dcterms.bibliographicCitation | Ferdous, M.; Naka, K.; Makabe, C.; Miyazaki, T.; others. A review of simple methods for arresting crack growth. Adv. Mat. Res. 2015, 1110, 185–190. https://doi.org/10.4028/www.scientific.net/AMR.1110.185. | spa |
dcterms.bibliographicCitation | Zarrinzadeh, H.; Kabir, M.; Deylami, A. Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading. Thin‐Walled Struct. 2017, 112, 140–148. https://doi.org/10.1016/j.tws.2016.12.023. | spa |
dcterms.bibliographicCitation | Mohammed, S.M.K.; Bouiadjra, B.B.; Benyahia, F.; Albedah, A. Analysis of the single overload effect on fatigue crack growth in AA 2024-T3 plates repaired with composite patch. Eng. Fract. Mech. 2018, 202, 147–161. https://doi.org/10.1016/j.engfracmech. 2018.09.008. | spa |
dcterms.bibliographicCitation | Huang, C.; Chen, T.; Feng, S. Finite element analysis of fatigue crack growth in CFRP-repaired four-point bend specimens. Eng. Struct. 2019, 183, 398–407. https://doi.org/10.1016/j.engstruct.2019.01.045. | spa |
dcterms.bibliographicCitation | Ye, H.; Wang, T.; Shuai, C.; Liu, C.; Xu, X. A novel driving force parameter ΔKeff1-αKmaxα for fatigue crack propagation in prestressed-CFRP-repaired steel structure. Compos. Struct. 2019, 214, 183–190. https://doi.org/10.1016/j.compstruct.2019.02.006. | spa |
dcterms.bibliographicCitation | Alshoaibi, A.M.; Fageehi, Y.A. Finite Element Simulation of a Crack Growth in the Presence of a Hole in the Vicinity of the Crack Trajectory. Materials 2022, 15, 363. https://doi.org/10.3390/ma15010363. | spa |
dcterms.bibliographicCitation | Ghfiri, R.; Shi, H.J.; Guo, R.; Mesmacque, G. Effects of expanded and non-expanded hole on the delay of arresting crack propagation for aluminum alloys. Mater. Sci. Eng A 2000, 286, 244–249. https://doi.org/10.1016/S0921-5093(00)00805-4. | spa |
dcterms.bibliographicCitation | Domazet, Ž. Comparison of fatigue crack retardation methods. Eng. Fail. Anal. 1996, 3, 137–147. https://doi.org/10.1016/1350- 6307(96)00006-4. | spa |
dcterms.bibliographicCitation | Moshtaghi, M.; Safyari, M. Effect of Work-Hardening Mechanisms in Asymmetrically Cyclic-Loaded Austenitic Stainless Steels on Low-Cycle and High-Cycle Fatigue Behavior. Steel Res. Int. 2021, 92, 2000242. https://doi.org/10.1002/srin.202000242. | spa |
dcterms.bibliographicCitation | Velilla-Díaz, W.; Zambrano, H.R. Effects of Grain Boundary Misorientation Angle on the Mechanical Behavior of Al Bicrystals. Nanomaterials 2023, 13, 3031. https://doi.org/10.3390/nano13233031. | spa |
dcterms.bibliographicCitation | Tian, L.; Cheng, Z. Fracture and Fatigue Analyses of Cracked Structures Using the Iterative Method. Geofluids 2021, 2021, 4434598. https://doi.org/10.1155/2021/4434598. | spa |
dcterms.bibliographicCitation | Zhang, P.; Li, J.; Zhao, Y.; Li, J. Crack propagation analysis and fatigue life assessment of high-strength bolts based on fracture mechanics. Sci. Rep. 2023, 13, 14567. https://doi.org/10.1038/s41598-023-41804-z. | spa |
dcterms.bibliographicCitation | Yang, D. Analysis of Fracture Mechanics Theory of the First Fracture Mechanism of Main Roof and Support Resistance with Large Mining Height in a Shallow Coal Seam. Sustainability 2021, 13, 1678. https://doi.org/10.3390/su13041678. | spa |
dcterms.bibliographicCitation | Velilla-Díaz, W.; Ricardo, L.; Palencia, A.; Zambrano, H.R. Fracture toughness estimation of single-crystal aluminum at nanoscale. Nanomaterials 2021, 11, 680. https://doi.org/10.3390/nano11030680. | spa |
dcterms.bibliographicCitation | Liu, J.; Feng, G.; Wang, J.; Ren, H.; Song, W.; Lin, P. Fatigue Life Assessment in the Typical Structure of Large Container Vessels Based on Fracture Mechanics. J. Mar. Sci. Eng. 2023, 11, 2075. https://doi.org/10.3390/jmse11112075. | spa |
dcterms.bibliographicCitation | Leonetti, D.; Maljaars, J.; Snijder, B.; Fracture mechanics based fatigue life prediction for a weld toe crack under constant and variable amplitude random block loading—Modeling and uncertainty estimation. Eng. Fract. Mech. 2021, 242, 107487. https://doi.org/10.1016/j.engfracmech.2020.107487. | spa |
dcterms.bibliographicCitation | Attarha, M.; Sattari-Far, I. Comparison of the continuum damage and fracture mechanics in fatigue assessment of components containing residual stresses. Mech. Based Des. Struct. Mach. 2023, 1–18. https://doi.org/10.1080/15397734.2023.2255662. | spa |
dcterms.bibliographicCitation | Velilla-Díaz, W.; Zambrano, H.R. Crack length effect on the fracture behavior of single-crystals and bi-crystals of aluminum. Nanomaterials 2021, 11, 2783. https://doi.org/10.3390/nano11112783. | spa |
dcterms.bibliographicCitation | Alrayes, O.; Könke, C.; Ooi, E.T.; Hamdia, K.M. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law. Materials 2023, 16, 863. https://doi.org/10.3390/ma16020863. | spa |
dcterms.bibliographicCitation | Kristensen, P.; Niordson, C.; Martínez-Pañeda, E. An assessment of phase field fracture: Crack initiation and growth. Phil. Trans. R. Soc. A 2021, 379, 20210021. https://doi.org/10.1098/rsta.2021.0021. | spa |
dcterms.bibliographicCitation | Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2015. Available online: https://www.astm.org/e0647-15e01.html (accessed on 29 January 2024). | spa |
dcterms.bibliographicCitation | Paris, P.C. A rational analytic theory of fatigue. Trends Engin 1961, 13, 9–14. | spa |
dcterms.bibliographicCitation | Wheeler, O. Spectrum loading and crack growth. Trans. of ASCE. J. Basic. Eng. 1972, 94, 181–186. https://doi.org/10.1115/1.3425362. | spa |
dcterms.bibliographicCitation | Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2017. | spa |
dcterms.bibliographicCitation | Harter, J.A. AFGROW users guide and technical manual. Technical report, Air Force Research Lab Wright-Patterson Afb Oh Air Vehicles Directorate. Air Force Res. Lab. 1999, 10. Available online: https://apps.dtic.mil/sti/citations/ADA370431 (accessed on 29 January 2024). | spa |
dcterms.bibliographicCitation | Irwin, G.R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J. Appl. Mech. 1957, 24, 361–364. https://doi.org/10.1115/1.4011547. | spa |
dcterms.bibliographicCitation | Fett, T. Stress Intensity Factors‐T‐Stresses‐Weight Functions; Institute of Ceramics in Mechanical Engineering, University of Karlsruhe: Karlsruhe, Germany, 2008. | spa |
dcterms.bibliographicCitation | Budynas, R.G.; Nisbett, J. Diseño en Ingeniería Mecánica de Shigley, 8th ed.; McGraw-Hill Interamericana: Mexico City, Mexico, 2008. | spa |
dcterms.bibliographicCitation | ANSYS. Ansys User’s Manual: Theory Reference, R22; Swanson Analysis System Inc.: Houston, TX, USA, 2007. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/ met14020182 | |
dc.subject.keywords | Fatigue crack growth; | spa |
dc.subject.keywords | Stop-holes | spa |
dc.subject.keywords | Fracture mechanics | spa |
dc.subject.keywords | Mathematical model | spa |
dc.subject.keywords | crack arrest | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.