Mostrar el registro sencillo del ítem
Determining Changes in Mangrove Cover Using Remote Sensing with Landsat Images: a Review
dc.contributor.author | Vasquez, Juan | |
dc.contributor.author | Acevedo-Barrios, Rosa | |
dc.contributor.author | Miranda‑Castro, Wendy | |
dc.contributor.author | Guerrero, Milton | |
dc.contributor.author | Meneses‑Ospina, Luisa | |
dc.date.accessioned | 2024-01-12T18:12:34Z | |
dc.date.available | 2024-01-12T18:12:34Z | |
dc.date.issued | 2023-12-22 | |
dc.date.submitted | 2024-01-12 | |
dc.identifier.citation | Vásquez, J., Acevedo-Barrios, R., Miranda-Castro, W. et al. Determinación de cambios en la cobertura de manglares mediante teledetección con imágenes Landsat: una revisión. Contaminación del agua, el aire y el suelo 235, 18 (2024). https://doi.org/10.1007/s11270-023-06788-6 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12595 | |
dc.description.abstract | Mangroves are ecosystems within the intertidal zone of tropical and subtropical coasts; they offer ecosystem services such as protection from coastal erosion and storms and flood control, act as carbon sinks and are also sources of income by providing various forest products. However, their cover is rapidly disappearing worldwide, which makes the diagnosis and monitoring of the state of these important ecosystems, as well as their restoration and conservation, a challenge. Remote sensing is a promising technique that provides accurate and efficient results in the mapping and monitoring of these ecosystems. The Landsat sensor provides the most used medium-resolution images for this type of study. The main objective of this article is to provide an updated review of the main remote sensing techniques, specifically Landsat satellite imagery, used in the detection of changes and mapping of mangrove forests, as well as a review of climatic and/or chemical factors related to changes in the spatial distribution of these ecosystems. | spa |
dc.description.sponsorship | Universidad Tecnológica de Bolívar | spa |
dc.description.tableofcontents | No aplica | spa |
dc.format.medium | 17 paginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Water Air Soil Pollut | spa |
dc.title | Determining Changes in Mangrove Cover Using Remote Sensing with Landsat Images: a Review | spa |
dcterms.bibliographicCitation | Abhyankar, A., Sahoo, T., Seth, B., Mohapatra, P., Palai, S., Bhargava, P., Chaurasiya, S., & Isasare, S. (2021). Mapping and change detection of mangroves around Mumbai using remote sensing and geographic information systems (Gis). Journal of Civil Engineering, Science and Technology, 12(1), 26–31. https:// doi. org/ 10. 33736/ jcest. 3339. 2021 | spa |
dcterms.bibliographicCitation | Abrams, M., & Yamaguchi, Y. (2019). Twenty years of ASTER contributions to lithologic mapping and mineral exploration. Remote Sensing, 11(11), 1394. https:// doi. org/ 10. 3390/ rs111 11394 | spa |
dcterms.bibliographicCitation | Afiesimama, S. E., Mmom, P. C., & Eludoyin, O. S. (2021). Spatio-temporal assessment of mangrove cover change in Niger Delta, Nigeria. International Journal of Innovative Science and Research Technology, 6(7), 860–867. | spa |
dcterms.bibliographicCitation | Ai, B., Huang, K., Zhao, J., Sun, S., Jian, Z., & Liu, X. (2022). Comparison of classification algorithms for detecting typical coastal reclamation in Guangdong Province with Landsat 8 and Sentinel 2 images. Remote Sensing, 14(2), 1–20. https:// doi. org/ 10. 3390/ rs140 20385 | spa |
dcterms.bibliographicCitation | Aljahdali, M. O., Munawar, S., & Khan, W. R. (2021). Monitoring mangrove forest degradation and regeneration: Landsat time series analysis of moisture and vegetation indices at Rabigh Lagoon. Red Sea. Forests, 12(1), 52. https:// doi. org/ 10. 3390/ f1201 0052 | spa |
dcterms.bibliographicCitation | Almeida, I., Silveira, P., Esvizero, P., Cunha da Camara, P., & Ligia, M. (2015). SATÉLITES SPOT: ASPESCTOS TEÓRICOS, TÉCNICAS E APLICAÇÕES. CONEA 2015. https:// www. resea rchga te. net/ publi cation/ 308698097_ SATEL ITES_ SPOT_ ASPES CTOS_ TEORI COS_ TECNI CAS_E_ APLIC ACOES | spa |
dcterms.bibliographicCitation | Asmara, T. M., Saraswati, R., & Hernina, R. (2021). Distribution and area changes of mangroves with remote sensing technology in Perancak Estuary, Jembrana. Bali. Journal of Physics: Conference Series, 1725(1), 1–8. https:// doi. org/ 10. 1088/ 1742- 6596/ 1725/1/ 012069 | spa |
dcterms.bibliographicCitation | Awty-Carroll, K., Bunting, P., Hardy, A., & Bell, G. (2019). Using continuous change detection and classification of Landsat data to investigate long-term mangrove dynamics in the Sundarbans Region. Remote Sensing, 11(23), 2833. https:// doi. org/ 10. 3390/ rs112 32833 | spa |
dcterms.bibliographicCitation | Budi, D. T., Arianingsih, I., Saputra, I. A., & Maliki, R. Z. (2022). Identification of mangrove forest changes used geographic information system (GIS) in South Banawa District, Donggala Regency. IOP Conference Series: Earth and Environmental Science, 986(1), 1–8. https:// doi. org/ 10. 1088/ 1755- 1315/ 986/1/ 012034 | spa |
dcterms.bibliographicCitation | Castillo, Y. B., Kim, K., & Kim, H. S. (2021). Thirty-two years of mangrove forest land cover change in Parita Bay, Panama. Forest Science and Technology, 17(2), 67–79. https:// doi. org/ 10. 1080/ 21580 103. 2021. 19225 12 | spa |
dcterms.bibliographicCitation | Chamberlain, D., Phinn, S., & Possingham, H. (2020). Remote sensing of mangroves and estuarine communities in Central Queensland. Australia. Remote Sensing, 12(1), 1–26. https:// doi. org/ 10. 3390/ rs120 10197 | spa |
dcterms.bibliographicCitation | Chamberlain, D. A., Phinn, S. R., & Possingham, H. P. (2021). Mangrove forest cover and phenology with Landsat dense time series in Central Queensland. Australia. Remote Sensing, 13(15), 3032. https:// doi. org/ 10. 3390/ rs131 53032 | spa |
dcterms.bibliographicCitation | Chen, P., Liew, S. C., & Kwoh, L. K. (2017). Mangrove mapping and change detection using satellite imagery. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5717–5720). https:// doi. org/ 10. 1109/ IGARSS. 2017. 81283 06 | spa |
dcterms.bibliographicCitation | Chowdhury, Md. S., & Hafsa, B. (2022). Multi-decadal land cover change analysis over Sundarbans Mangrove Forest of Bangladesh: A GIS and remote sensing based approach. Global Ecology and Conservation, 37, e02151. https:// doi. org/ 10. 1016/j. gecco. 2022. e02151 | spa |
dcterms.bibliographicCitation | Hapsari, K. C. P., & Permatasari, D. A. (2020). Changes of mangrove area in Pangpang Bay, Banyuwangi 2014– 2018 using Landsat-8 imagery. Journal of Physics: Conference Series, 1528(1), 012063. https:// doi. org/ 10. 1088/ 1742- 6596/ 1528/1/ 012063 | spa |
dcterms.bibliographicCitation | Constance, A., Haverkamp, P. J., Bunbury, N., & Schaepman- Strub, G. (2021). Extent change of protected mangrove forest and its relation to wave power exposure on Aldabra Atoll. Global Ecology and Conservation, 27, e01564. https:// doi. org/ 10. 1016/j. gecco. 2021. e01564 | spa |
dcterms.bibliographicCitation | Das, B., & Dhorde, A. (2021). Geostatistical approach to assess mangrove spatial variability: A bi-decadal scenario over Raigarh coast of Maharashtra. Journal of Coastal Conservation, 25(1), 1–25. https:// doi. org/ 10. 1007/ s11852- 021- 00813-8 | spa |
dcterms.bibliographicCitation | Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., & Souza-Filho, P. W. M. (2019). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7), 1–19. https:// doi. org/ 10. 3390/ rs110 70808 | spa |
dcterms.bibliographicCitation | Eid, A. N. M., Olatubara, C. O., Ewemoje, T. A., El-Hennawy, M. T., & Farouk, H. (2020). Inland wetland time-series digital change detection based on SAVI and NDWI indecies: Wadi El-Rayan lakes. Egypt. Remote Sensing Applications: Society and Environment, 19, 100347. https:// doi. org/ 10. 1016/j. rsase. 2020. 100347 | spa |
dcterms.bibliographicCitation | Elmahdy, S. I., & Ali, T. A. (2022). Monitoring changes and soil characterization in mangrove forests of the United Arab Emirates using the canonical correlation forest model by multitemporal of Landsat data. Frontiers in Remote Sensing, 3, 782869. https:// doi. org/ 10. 3389/ frsen. 2022. 782869 | spa |
dcterms.bibliographicCitation | Elmahdy, S. I., & Mohamed, M. M. (2023). Monitoring and analysing the Emirate of Abu Dhabi’s Mangrove changes using multitemporal Landsat images and random forest classifier. Spatial Data Science Symposium 2023 Short Paper Proceedings. UC Santa Barbara. https:// doi. org/ 10. 25436/ E2QC7S | spa |
dcterms.bibliographicCitation | Emch, M., & Peterson, M. (2006). Mangrove forest cover change in the Bangladesh Sundarbans from 1989–2000: A remote sensing approach. Geocarto International, 21(1), 5–12. https:// doi. org/ 10. 1080/ 10106 04060 85423 68 | spa |
dcterms.bibliographicCitation | EoPortal Directory. (2020). Satellite Missions Database. Retrieved September 13, 2023, from https:// eopor tal. org/ web/ eopor tal/ satel lite- missi ons | spa |
dcterms.bibliographicCitation | FAO, Food and Agriculture Organization of the United Nations. (2023). The world’s mangroves 2000–2020. Rome. https:// doi. org/ 10. 4060/ cc704 4en | spa |
dcterms.bibliographicCitation | Faye, M., Tine, D., Diouf, F., Cissay, A., & Faye, C. S. (2022). Climate change and land use dynamics in Djirnda Commune (Fatick Region - Senegal): Remote sensing approacH. European Journal of Biology and Biotechnology, 3(4), 1–7. https:// doi. org/ 10. 24018/ ejbio. 2022.3. 4. 375 | spa |
dcterms.bibliographicCitation | Findi, E. N., & Wantim, M. N. (2022). Using remote sensing and GIS to evaluate mangrove forest dynamics in Douala- Edea Reserve, Cameroon. Journal of Materials and Environmental Science, 13(3), 222–235. | spa |
dcterms.bibliographicCitation | Flores, P. C. M., David, L. T., & Siringan, F. P. (2020). Mangrove forest cover change (1947–2018) at the River Mouth Section of The Jaro Floodway, Iloilo City, Philippines. IEEE India Geoscience and Remote Sensing Symposium (InGARSS), 2020, 246–249. https:// doi. org/ 10. 1109/ InGAR SS481 98. 2020. 93589 69 | spa |
dcterms.bibliographicCitation | Fu, B., Yao, H., Lan, F., Li, S., Liang, Y., He, H., Jia, M., Wang, Y., & Fan, D. (2023). Collaborative multiple change detection methods for monitoring the spatio-temporal dynamics of mangroves in Beibu Gulf. China. Giscience and Remote Sensing, 60(1), 2202506. https:// doi. org/ 10. 1080/ 15481 603. 2023. 22025 06 | spa |
dcterms.bibliographicCitation | Gopalakrishnan, L., Satyanarayana, B., Chen, D., Wolswijk, G., Amir, A. A., Vandegehuchte, M. B., Muslim, A. B., Koedam, N., & Dahdouh-Guebas, F. (2021). Using historical archives and Landsat imagery to explore changes in the mangrove cover of Peninsular Malaysia between 1853 and 2018. Remote Sensing, 13(17), 19–22. https:// doi. org/ 10. 3390/ rs131 73403 | spa |
dcterms.bibliographicCitation | Haider, F., & Hossain, M. (2021). Spatial-temporal expanses and mangrove forest cover change detection mapping analysis using geographic information system and remote sensing technic: A case study of Nijhum Dwip,Bangladesh. Journal of the Remote Sensing Society of Japan, 41(1), 13–20. https:// doi. org/ 10. 11440/ rssj. 41. 13 | spa |
dcterms.bibliographicCitation | Halder, S., Samanta, K., Das, S., & Pathak, D. (2021). Monitoring the inter-decade spatial–temporal dynamics of the Sundarban mangrove forest of India from 1990 to 2019. Regional Studies in Marine Science, 44, 101718. https:// doi. org/ 10. 1016/j. rsma. 2021. 101718 | spa |
dcterms.bibliographicCitation | Halder, S., Samanta, K., Das, S., & Pathak, D. (2021). Monitoring the inter-decade spatial–temporal dynamics of the Sundarban mangrove forest of India from 1990 to 2019. Regional Studies in Marine Science, 44, 101718. https:// doi. org/ 10. 1016/j. rsma. 2021. 101718 | spa |
dcterms.bibliographicCitation | Hamzah, M. L., Amir, A. A., Maulud, K. N. A., Sharma, S., Mohd, F. A., Selamat, S. N., Karim, O., Ariffin, E. H., & Begum, R. A. (2020). Assessment of the mangrove forest changes along the Pahang coast using remote sensing and gis technology. Journal of Sustainability Science and Management, 15(5), 43–58. https:// doi. org/ 10. 46754/ JSSM. 2020. 07. 006 | spa |
dcterms.bibliographicCitation | Heenkenda, M., Joyce, K., Maier, S., & Bartolo, R. (2014). Mangrove species identification: Comparing World- View-2 with aerial photographs. Remote Sensing, 6(7), 6064–6088. https:// doi. org/ 10. 3390/ rs607 6064 | spa |
dcterms.bibliographicCitation | Heumann, B. W. (2011). Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Progress in Physical Geography: Earth and Environment, 35(1), 87–108. https:// doi. org/ 10. 1177/ 03091 33310 385371 | spa |
dcterms.bibliographicCitation | Hu, L., Xu, N., Liang, J., Li, Z., Chen, L., & Zhao, F. (2020). Advancing the mapping of mangrove forests at nationalscale using sentinel-1 and Sentinel-2 time-series data with Google Earth engine: A case study in China. Remote Sensing, 12(19), 3120. https:// doi. org/ 10. 3390/ rs121 93120 | spa |
dcterms.bibliographicCitation | Islam, Md. R., Khan, Md. N. I., Khan, Md. Z., & Roy, B. (2021). A three decade assessment of forest cover changes in Nijhum dwip national park using remote sensing and GIS. Environmental Challenges, 4, 1–17. https:// doi. org/ 10. 1016/j. envc. 2021. 100162 | spa |
dcterms.bibliographicCitation | Jaelani, Malik A., & Djalil, A. R. (2021). Mangrove Changes in Pannikiang Island Barru Regency South Sulawesi. Journal of Physics: Conference Series, 1752(1), 1–6. https:// doi. org/ 10. 1088/ 1742- 6596/ 1752/1/ 012088 | spa |
dcterms.bibliographicCitation | Jamaluddin, I., Chen, Y., Ridha, S. M., Mahyatar, P., & Ayudyanti, A. G. (2022). Two decades mangroves loss monitoring using random forest and Landsat data in East Luwu. Indonesia, 2000–2020, 282–296. | spa |
dcterms.bibliographicCitation | Kamaruddin, N. A., & Shigeo, F. (2018). Classification and change detection of Sabah mangrove forest using decision- tree learning technique. IOP Conference Series: Earth and Environmental Science, 169(1), 1–7. https:// doi. org/ 10. 1088/ 1755- 1315/ 169/1/ 012055 | spa |
dcterms.bibliographicCitation | Kumar, M., Mondal, I., & Pham, Q. B. (2021). Monitoring forest landcover changes in the Eastern Sundarban of Bangladesh from 1989 to 2019. Acta Geophysica, 69(2), 561– 577. https:// doi. org/ 10. 1007/ s11600- 021- 00551-3 | spa |
dcterms.bibliographicCitation | Long, C., Dai, Z., Zhou, X., Mei, X., & Van Mai, C. (2021). Mapping mangrove forests in the Red River Delta. Vietnam. Forest Ecology and Management, 483, 118910. https:// doi. org/ 10. 1016/j. foreco. 2020. 118910 | spa |
dcterms.bibliographicCitation | Ma, C., Ai, B., Zhao, J., Xu, X., & Huang, W. (2019). Change detection of mangrove forests in Coastal Guangdong during the past three decades based on remote sensing data. Remote Sensing, 11(8), 921. https:// doi. org/ 10. 3390/ rs110 80921 | spa |
dcterms.bibliographicCitation | Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: Mapping and monitoring ofmangrove ecosystem—A review. Complex and Intelligent Systems, 7(6), 2797–2818. https:// doi. org/ 10. 1007/ s40747- 021- 00457-z | spa |
dcterms.bibliographicCitation | Mayunga, J. S., & Uhinga, G. A. (2018). Mapping spatiotemporal distribution of mangroves in Mafia Island in Tanzania using Landsat imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4W8), 133–138. https:// doi. org/ 10. 5194/ isprs- archi ves- XLII-4- W8- 133- 2018 | spa |
dcterms.bibliographicCitation | Mokhtar, E. S., Majid, M. A. A. A., Norman, M., Roslani, M. A., Nasirun, N., & Mohammad, Z. (2022). Mangrove area delineation using object-based classification on Sentinel-2 imagery: Tuba Island, Langkawi. IOP Conference Series: Earth and Environmental Science, 1019(1), 1–8. https:// doi. org/ 10. 1088/ 1755- 1315/ 1019/1/ 012019 | spa |
dcterms.bibliographicCitation | Mondal, B., Saha, A. K., & Roy, A. (2021). Spatio-temporal pattern of change in mangrove populations along the coastal West Bengal. India. Environmental Challenges, 5, 100306. https:// doi. org/ 10. 1016/j. envc. 2021. 100306 | spa |
dcterms.bibliographicCitation | Monga, E., Mangora, M. M., & Mayunga, J. S. (2018). Mangrove cover change detection in the Rufiji Delta in Tanzania. Western Indian Ocean Journal of Marine Science, 17(2), 1. https:// doi. org/ 10. 4314/ wiojms. v17i2.1 | spa |
dcterms.bibliographicCitation | Nguyen, L. D., Nguyen, C. T., Le, H. S., & Tran, B. Q. (2019). Mangrove mapping and above-ground biomass change detection using satellite images in coastal areas of Thai Binh Province. Vietnam. Forest and Society, 3(2), 248– 261. https:// doi. org/ 10. 24259/ fs. v3i2. 7326 | spa |
dcterms.bibliographicCitation | Nguyen, H. H., Nghia, N. H., Nguyen, H. T. T., Le, A. T., Tran, L. T. N., Duong, L. V. K., Bohm, S., & Furniss, M. J. (2020). Classification methods for mapping mangrove extents and drivers of change in Thanh Hoa province, Vietnam during 2005–2018. Forest and Society, 4(1), 225–242. https:// doi. org/ 10. 24259/ fs. v4i1. 9295 | spa |
dcterms.bibliographicCitation | Nguyen, H. H., Tran, L. T. N., Le, A. T., Nghia, N. H., Duong, L. V. K., Nguyen, H. T. T., Bohm, S., & Premnath, C. F. S. (2020). Monitoring changes in coastal mangrove extents using multi-temporal satellite data in selected communes, Hai Phong City. Vietnam. Forest and Society, 4(1), 256–270. https:// doi. org/ 10. 24259/ fs. v4i1. 8486 | spa |
dcterms.bibliographicCitation | Nguyen, H. T. T., Hardy, G. E. S., Le, T. V., Nguyen, H. Q., Nguyen, H. H., Nguyen, T. V., & Dell, B. (2021a). Mangrove forest landcover changes in coastal Vietnam: A case study from 1973 to 2020 in thanh hoa and nghe an provinces. Forests, 12(5), 1–20. https:// doi. org/ 10. 3390/ f1205 0637 | spa |
dcterms.bibliographicCitation | Nguyen, Q., Nguyen Hai, H., Vo Dai, N., & Pham Duy, Q. (2021b). Detecting changes in mangrove forests from multi-temporal sentinel-2 data in Tien Yen district Quang Ninh province. Tạp chí Khoa học và Công nghệ Lâm nghiệp. http:// elib. vnuf. edu. vn/ handle/ 12345 6789/ 18216 | spa |
dcterms.bibliographicCitation | Nurhaliza, A. P., Damayanti, A., & Dimyati, M. (2021). Monitoring area and health changes of mangrove forest using multitemporal landsat imagery in Taman Hutan Raya Ngurah Rai, Bali Province. IOP Conference Series: Earth and Environmental Science, 673(1), 012050. https:// doi. org/ 10. 1088/ 1755- 1315/ 673/1/ 012050 | spa |
dcterms.bibliographicCitation | Olatunji, E.T., Charles, J.F.(2020). Change detection analysis of mangrove ecosystems in the Mesurado Wetland, Montserrado County, Liberia, IJRES 7, 17–24. RetrievedSeptember 4, 2023, from http:// bluep enjou rnals. org/ ijres/ pdf/ 2020/ Septe mber/ Olatu nji_ and_ Charl es. pdf | spa |
dcterms.bibliographicCitation | Otero, V., Van De Kerchove, R., Satyanarayana, B., Mohd- Lokman, H., Lucas, R., & Dahdouh-Guebas, F. (2019). An analysis of the early regeneration of mangrove forests using Landsat time series in the Matang Mangrove Forest Reserve. Peninsular Malaysia. Remote Sensing, 11(7), 774. https:// doi. org/ 10. 3390/ rs110 70774 | spa |
dcterms.bibliographicCitation | Parida, B. R., & Kumar, P. (2020). Mapping and dynamic analysis of mangrove forest during 2009–2019 using landsat– 5 and sentinel–2 satellite data along Odisha Coast. Tropical Ecology, 61(4), 538–549. https:// doi. org/ 10. 1007/ s42965- 020- 00112-7 | spa |
dcterms.bibliographicCitation | Pasquarella, V. J., Holden, C. E., & Woodcock, C. E. (2018). Improved mapping of forest type using spectral-temporal Landsat features. Remote Sensing of Environment, 210, 193–207. https:// doi. org/ 10. 1016/j. rse. 2018. 02. 064 | spa |
dcterms.bibliographicCitation | Priyono, K. D. (2022). Identification of mangrove changes in the Mahakam delta in 2007-2017 using alos/palsar and Landsat. International Journal of GEOMATE, 23, 96. https:// doi. org/ 10. 21660/ 2022. 96. 3312 | spa |
dcterms.bibliographicCitation | Purwanto, A. D., Hikmah, N. I., Aprianto, A., & Rahmawati, E. (2021). Modelling spatio-temporal of mangrove ecosystem and community local wisdom in Taman Hutan Raya (Tahura), Ngurah Rai, Bali. International Journal on Advanced Science, Engineering and Information Technology, 11(4), 1642–1653. https:// doi. org/ 10. 18517/ ijase it. 11.4. 11711 | spa |
dcterms.bibliographicCitation | Quang, N. H., Quinn, C. H., Stringer, L. C., Carrie, R., Hackney, C. R., Van Hue, L. T., Tan, D. V., & Thanh Nga, P. T. (2020). Multi-decadal changes in mangrove extent, age and species in the Red River Estuaries of Viet Nam. Remote Sensing, 12(14), 1–25. https:// doi. org/ 10. 3390/ rs121 42289 | spa |
dcterms.bibliographicCitation | Rahman, S., Hasan, M., Siddeqa, M., & Khanam, R. (2021). Spatio-temporal analysis of land use and land cover changes in Barguna district of Bangladesh using remote sensing techniques: Focusing on mangrove vegetation. Journal of Global Ecology and Environment, 11(4), 43–54. | spa |
dcterms.bibliographicCitation | Rahmawaty, Siahaan J., Nuryawan, A., Harahap, M. M., Ismail, M. H., Rauf, A., Kurniawan, H., Gandaseca, S., & Karuniasa, M. (2023). Mangrove cover change (2005-2019) in the Northern of Medan City, North Sumatra. Indonesia. Geocarto International, 38(1), 2228742. https:// doi. org/ 10. 1080/ 10106 049. 2023. 22287 42 | spa |
dcterms.bibliographicCitation | Rosalina, D., Rombe, K. H., Surachmat, A., Amiluddin, M., & Leilani, A. (2023). Application of remote sensing and GIS for mapping changes in land area and mangrove density in the Kuri Caddi Mangrove tourism, South Sulawesi Province, Indonesia. Biodiversitas Journal of Biological Diversity, 24(2) https:// smujo. id/ biodiv/ artic le/ view/ 13299. | spa |
dcterms.bibliographicCitation | Roy, S., Mahapatra, M., & Chakraborty, A. (2019). Mapping and monitoring of mangrove along the Odisha coast based on remote sensing and GIS techniques. Modeling Earth Systems and Environment, 5(1), 217–226. https:// doi. org/ 10. 1007/ s40808- 018- 0529-7 | spa |
dcterms.bibliographicCitation | Sakti, A. D., Fauzi, A. I., Wilwatikta, F. N., Rajagukguk, Y. S., Sudhana, S. A., Yayusman, L. F., Syahid, L. N., Sritarapipat, T., Principe, J. A., Trang, N. T. Q., Sulistyawati, E.,Utami, I., Arief, C. W., & Wikantika, K. (2020). Multisource remote sensing data product analysis: Investigating anthropogenic and naturogenic impacts on mangroves in Southeast Asia. Remote Sensing, 12(17), 1–29. https:// doi. org/ 10. 3390/ rs121 72720 | spa |
dcterms.bibliographicCitation | Saravanan, S., Jegankumar, R., Selvaraj, A., Jacinth Jennifer, J., & Parthasarathy, K. S. S. (2018). UChapter 20—Utility of Landsat Data for Assessing Mangrove Degradation in Muthupet Lagoon, South India. In M. U. Ramkumar, R. A. James, D. Menier, & K. Kumaraswamy (Eds.), Coastal Zone Management (pp. 471–484). Elsevier. https:// doi. org/ 10. 1016/ B978-0- 12- 814350- 6. 00020-3 | spa |
dcterms.bibliographicCitation | Shi, F., Liu, M., Qiu, J., Zhang, Y., Su, H., Mao, X., Li, X., Fan, J., Chen, J., Lv, Y., Xu, W., Wang, Z., & Li, M. (2022). Assessing land cover and ecological quality changes in the forest-steppe ecotone of the Greater Khingan Mountains, Northeast China, from Landsat and MODIS observations from 2000 to 2018. Remote Sensing, 14(3), 1–29. https:// doi. org/ 10. 3390/ rs140 30725 | spa |
dcterms.bibliographicCitation | Simarmata, N., Wikantika, K., Tarigan, T. A., Aldyansyah, M., & Tohir, R. K. (2021). Utilization of multitemporal imagery for analysis of changes in mangrove cover by Using Cloud Computing Method in the East Coast Region of Lampung Province. IOP Conference Series: Earth and Environmental Science, 830(1), 012013. https:// doi. org/ 10. 1088/ 1755- 1315/ 830/1/ 012013 | spa |
dcterms.bibliographicCitation | Suciani, A., Rahmadi, M. T., & Islami, Z. R. (2020). Analyzing mangrove forest area changes in coastal zone of Langsa City using Landsat imagery. IOP Conference Series: Earth and Environmental Science, 500(1), 1–8. https:// doi. org/ 10. 1088/ 1755- 1315/ 500/1/ 012084 | spa |
dcterms.bibliographicCitation | Toosi, N. B., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L. T. (2019). Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, e00662, 1–16. https:// doi. org/ 10. 1016/j. gecco. 2019. e00662 Vu, T. T. P., Pham, T. D., Saintilan, N., Skidmo | spa |
dcterms.bibliographicCitation | Vu, T. T. P., Pham, T. D., Saintilan, N., Skidmore, A., Luu, H. V., Vu, Q. H., Le, N. N., Nguyen, H. Q., &Matsushita, B. (2022). Mapping multi-decadal mangrove extent in the Northern Coast of Vietnam using Landsat time-series data on Google Earth engine platform. Remote Sensing, 14(18), 4664. https:// doi. org/ 10. 3390/ rs141 84664 | spa |
dcterms.bibliographicCitation | Wang, M., Cao, W., Guan, Q., Wu, G., & Wang, F. (2018). Assessing changes of mangrove forest in a coastal region of southeast China using multi-temporal satellite images. Estuarine, Coastal and Shelf Science, 207, 283–292. https:// doi. org/ 10. 1016/j. ecss. 2018. 04. 021 | spa |
dcterms.bibliographicCitation | Zhang, Z., Ahmed, M. R., Zhang, Q., Li, Y., & Li, Y. (2023). Monitoring of 35-year mangrove wetland change dynamics and agents in the sundarbans using temporal consistency checking. Remote Sensing, 15(3), 625. https:// doi. org/ 10. 3390/ rs150 30625 | spa |
dcterms.bibliographicCitation | Zhao, Q., Yu, L., Du, Z., Peng, D., Hao, P., Zhang, Y., & Gong, P. (2022). An overview of the applications of earth observation satellite data: Impacts and future trends. Remote Sensing, 14(8), 1863. https:// doi. org/ 10. 3390/ rs140 81863 | spa |
dcterms.bibliographicCitation | Zhu, B., Liao, J., & Shen, G. (2021). Combining time series and land cover data for analyzing spatio-temporal changes in mangrove forests: A case study of Qinglangang Nature Reserve, Hainan. China. Ecological Indicators, 131, 108135. https:// doi. org/ 10. 1016/j. ecoli nd. 2021. 108135 | spa |
dcterms.bibliographicCitation | Zuhairi, A., Zaleha, K., Suhaila, Nur, & Muhammad Shaheed, S. (2019). Mapping mangrove degradation in Pahang river estuary, Pekan Pahang by using remote sensing. Science Heritage Journal, 3(2), 01–05. https:// doi. org/ 10. 26480/ gws. 02. 2019. 01. 05 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.33736/jcest.3339.2021 | |
dc.subject.keywords | Coastal ecosystem | spa |
dc.subject.keywords | Estuarine ecosystems | spa |
dc.subject.keywords | Landscape ecology | spa |
dc.subject.keywords | GIS | spa |
dc.subject.keywords | Forest change | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.relation.iscitedby | Acceso abierto | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | Scopus | |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Ambiental | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.