Mostrar el registro sencillo del ítem

dc.contributor.authorVasquez, Juan
dc.contributor.authorAcevedo-Barrios, Rosa
dc.contributor.authorMiranda‑Castro, Wendy
dc.contributor.authorGuerrero, Milton
dc.contributor.authorMeneses‑Ospina, Luisa
dc.date.accessioned2024-01-12T18:12:34Z
dc.date.available2024-01-12T18:12:34Z
dc.date.issued2023-12-22
dc.date.submitted2024-01-12
dc.identifier.citationVásquez, J., Acevedo-Barrios, R., Miranda-Castro, W. et al. Determinación de cambios en la cobertura de manglares mediante teledetección con imágenes Landsat: una revisión. Contaminación del agua, el aire y el suelo 235, 18 (2024). https://doi.org/10.1007/s11270-023-06788-6spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12595
dc.description.abstractMangroves are ecosystems within the intertidal zone of tropical and subtropical coasts; they offer ecosystem services such as protection from coastal erosion and storms and flood control, act as carbon sinks and are also sources of income by providing various forest products. However, their cover is rapidly disappearing worldwide, which makes the diagnosis and monitoring of the state of these important ecosystems, as well as their restoration and conservation, a challenge. Remote sensing is a promising technique that provides accurate and efficient results in the mapping and monitoring of these ecosystems. The Landsat sensor provides the most used medium-resolution images for this type of study. The main objective of this article is to provide an updated review of the main remote sensing techniques, specifically Landsat satellite imagery, used in the detection of changes and mapping of mangrove forests, as well as a review of climatic and/or chemical factors related to changes in the spatial distribution of these ecosystems.spa
dc.description.sponsorshipUniversidad Tecnológica de Bolívarspa
dc.description.tableofcontentsNo aplicaspa
dc.format.medium17 paginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater Air Soil Pollutspa
dc.titleDetermining Changes in Mangrove Cover Using Remote Sensing with Landsat Images: a Reviewspa
dcterms.bibliographicCitationAbhyankar, A., Sahoo, T., Seth, B., Mohapatra, P., Palai, S., Bhargava, P., Chaurasiya, S., & Isasare, S. (2021). Mapping and change detection of mangroves around Mumbai using remote sensing and geographic information systems (Gis). Journal of Civil Engineering, Science and Technology, 12(1), 26–31. https:// doi. org/ 10. 33736/ jcest. 3339. 2021spa
dcterms.bibliographicCitationAbrams, M., & Yamaguchi, Y. (2019). Twenty years of ASTER contributions to lithologic mapping and mineral exploration. Remote Sensing, 11(11), 1394. https:// doi. org/ 10. 3390/ rs111 11394spa
dcterms.bibliographicCitationAfiesimama, S. E., Mmom, P. C., & Eludoyin, O. S. (2021). Spatio-temporal assessment of mangrove cover change in Niger Delta, Nigeria. International Journal of Innovative Science and Research Technology, 6(7), 860–867.spa
dcterms.bibliographicCitationAi, B., Huang, K., Zhao, J., Sun, S., Jian, Z., & Liu, X. (2022). Comparison of classification algorithms for detecting typical coastal reclamation in Guangdong Province with Landsat 8 and Sentinel 2 images. Remote Sensing, 14(2), 1–20. https:// doi. org/ 10. 3390/ rs140 20385spa
dcterms.bibliographicCitationAljahdali, M. O., Munawar, S., & Khan, W. R. (2021). Monitoring mangrove forest degradation and regeneration: Landsat time series analysis of moisture and vegetation indices at Rabigh Lagoon. Red Sea. Forests, 12(1), 52. https:// doi. org/ 10. 3390/ f1201 0052spa
dcterms.bibliographicCitationAlmeida, I., Silveira, P., Esvizero, P., Cunha da Camara, P., & Ligia, M. (2015). SATÉLITES SPOT: ASPESCTOS TEÓRICOS, TÉCNICAS E APLICAÇÕES. CONEA 2015. https:// www. resea rchga te. net/ publi cation/ 308698097_ SATEL ITES_ SPOT_ ASPES CTOS_ TEORI COS_ TECNI CAS_E_ APLIC ACOESspa
dcterms.bibliographicCitationAsmara, T. M., Saraswati, R., & Hernina, R. (2021). Distribution and area changes of mangroves with remote sensing technology in Perancak Estuary, Jembrana. Bali. Journal of Physics: Conference Series, 1725(1), 1–8. https:// doi. org/ 10. 1088/ 1742- 6596/ 1725/1/ 012069spa
dcterms.bibliographicCitationAwty-Carroll, K., Bunting, P., Hardy, A., & Bell, G. (2019). Using continuous change detection and classification of Landsat data to investigate long-term mangrove dynamics in the Sundarbans Region. Remote Sensing, 11(23), 2833. https:// doi. org/ 10. 3390/ rs112 32833spa
dcterms.bibliographicCitationBudi, D. T., Arianingsih, I., Saputra, I. A., & Maliki, R. Z. (2022). Identification of mangrove forest changes used geographic information system (GIS) in South Banawa District, Donggala Regency. IOP Conference Series: Earth and Environmental Science, 986(1), 1–8. https:// doi. org/ 10. 1088/ 1755- 1315/ 986/1/ 012034spa
dcterms.bibliographicCitationCastillo, Y. B., Kim, K., & Kim, H. S. (2021). Thirty-two years of mangrove forest land cover change in Parita Bay, Panama. Forest Science and Technology, 17(2), 67–79. https:// doi. org/ 10. 1080/ 21580 103. 2021. 19225 12spa
dcterms.bibliographicCitationChamberlain, D., Phinn, S., & Possingham, H. (2020). Remote sensing of mangroves and estuarine communities in Central Queensland. Australia. Remote Sensing, 12(1), 1–26. https:// doi. org/ 10. 3390/ rs120 10197spa
dcterms.bibliographicCitationChamberlain, D. A., Phinn, S. R., & Possingham, H. P. (2021). Mangrove forest cover and phenology with Landsat dense time series in Central Queensland. Australia. Remote Sensing, 13(15), 3032. https:// doi. org/ 10. 3390/ rs131 53032spa
dcterms.bibliographicCitationChen, P., Liew, S. C., & Kwoh, L. K. (2017). Mangrove mapping and change detection using satellite imagery. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5717–5720). https:// doi. org/ 10. 1109/ IGARSS. 2017. 81283 06spa
dcterms.bibliographicCitationChowdhury, Md. S., & Hafsa, B. (2022). Multi-decadal land cover change analysis over Sundarbans Mangrove Forest of Bangladesh: A GIS and remote sensing based approach. Global Ecology and Conservation, 37, e02151. https:// doi. org/ 10. 1016/j. gecco. 2022. e02151spa
dcterms.bibliographicCitationHapsari, K. C. P., & Permatasari, D. A. (2020). Changes of mangrove area in Pangpang Bay, Banyuwangi 2014– 2018 using Landsat-8 imagery. Journal of Physics: Conference Series, 1528(1), 012063. https:// doi. org/ 10. 1088/ 1742- 6596/ 1528/1/ 012063spa
dcterms.bibliographicCitationConstance, A., Haverkamp, P. J., Bunbury, N., & Schaepman- Strub, G. (2021). Extent change of protected mangrove forest and its relation to wave power exposure on Aldabra Atoll. Global Ecology and Conservation, 27, e01564. https:// doi. org/ 10. 1016/j. gecco. 2021. e01564spa
dcterms.bibliographicCitationDas, B., & Dhorde, A. (2021). Geostatistical approach to assess mangrove spatial variability: A bi-decadal scenario over Raigarh coast of Maharashtra. Journal of Coastal Conservation, 25(1), 1–25. https:// doi. org/ 10. 1007/ s11852- 021- 00813-8spa
dcterms.bibliographicCitationDiniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., & Souza-Filho, P. W. M. (2019). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7), 1–19. https:// doi. org/ 10. 3390/ rs110 70808spa
dcterms.bibliographicCitationEid, A. N. M., Olatubara, C. O., Ewemoje, T. A., El-Hennawy, M. T., & Farouk, H. (2020). Inland wetland time-series digital change detection based on SAVI and NDWI indecies: Wadi El-Rayan lakes. Egypt. Remote Sensing Applications: Society and Environment, 19, 100347. https:// doi. org/ 10. 1016/j. rsase. 2020. 100347spa
dcterms.bibliographicCitationElmahdy, S. I., & Ali, T. A. (2022). Monitoring changes and soil characterization in mangrove forests of the United Arab Emirates using the canonical correlation forest model by multitemporal of Landsat data. Frontiers in Remote Sensing, 3, 782869. https:// doi. org/ 10. 3389/ frsen. 2022. 782869spa
dcterms.bibliographicCitationElmahdy, S. I., & Mohamed, M. M. (2023). Monitoring and analysing the Emirate of Abu Dhabi’s Mangrove changes using multitemporal Landsat images and random forest classifier. Spatial Data Science Symposium 2023 Short Paper Proceedings. UC Santa Barbara. https:// doi. org/ 10. 25436/ E2QC7Sspa
dcterms.bibliographicCitationEmch, M., & Peterson, M. (2006). Mangrove forest cover change in the Bangladesh Sundarbans from 1989–2000: A remote sensing approach. Geocarto International, 21(1), 5–12. https:// doi. org/ 10. 1080/ 10106 04060 85423 68spa
dcterms.bibliographicCitationEoPortal Directory. (2020). Satellite Missions Database. Retrieved September 13, 2023, from https:// eopor tal. org/ web/ eopor tal/ satel lite- missi onsspa
dcterms.bibliographicCitationFAO, Food and Agriculture Organization of the United Nations. (2023). The world’s mangroves 2000–2020. Rome. https:// doi. org/ 10. 4060/ cc704 4enspa
dcterms.bibliographicCitationFaye, M., Tine, D., Diouf, F., Cissay, A., & Faye, C. S. (2022). Climate change and land use dynamics in Djirnda Commune (Fatick Region - Senegal): Remote sensing approacH. European Journal of Biology and Biotechnology, 3(4), 1–7. https:// doi. org/ 10. 24018/ ejbio. 2022.3. 4. 375spa
dcterms.bibliographicCitationFindi, E. N., & Wantim, M. N. (2022). Using remote sensing and GIS to evaluate mangrove forest dynamics in Douala- Edea Reserve, Cameroon. Journal of Materials and Environmental Science, 13(3), 222–235.spa
dcterms.bibliographicCitationFlores, P. C. M., David, L. T., & Siringan, F. P. (2020). Mangrove forest cover change (1947–2018) at the River Mouth Section of The Jaro Floodway, Iloilo City, Philippines. IEEE India Geoscience and Remote Sensing Symposium (InGARSS), 2020, 246–249. https:// doi. org/ 10. 1109/ InGAR SS481 98. 2020. 93589 69spa
dcterms.bibliographicCitationFu, B., Yao, H., Lan, F., Li, S., Liang, Y., He, H., Jia, M., Wang, Y., & Fan, D. (2023). Collaborative multiple change detection methods for monitoring the spatio-temporal dynamics of mangroves in Beibu Gulf. China. Giscience and Remote Sensing, 60(1), 2202506. https:// doi. org/ 10. 1080/ 15481 603. 2023. 22025 06spa
dcterms.bibliographicCitationGopalakrishnan, L., Satyanarayana, B., Chen, D., Wolswijk, G., Amir, A. A., Vandegehuchte, M. B., Muslim, A. B., Koedam, N., & Dahdouh-Guebas, F. (2021). Using historical archives and Landsat imagery to explore changes in the mangrove cover of Peninsular Malaysia between 1853 and 2018. Remote Sensing, 13(17), 19–22. https:// doi. org/ 10. 3390/ rs131 73403spa
dcterms.bibliographicCitationHaider, F., & Hossain, M. (2021). Spatial-temporal expanses and mangrove forest cover change detection mapping analysis using geographic information system and remote sensing technic: A case study of Nijhum Dwip,Bangladesh. Journal of the Remote Sensing Society of Japan, 41(1), 13–20. https:// doi. org/ 10. 11440/ rssj. 41. 13spa
dcterms.bibliographicCitationHalder, S., Samanta, K., Das, S., & Pathak, D. (2021). Monitoring the inter-decade spatial–temporal dynamics of the Sundarban mangrove forest of India from 1990 to 2019. Regional Studies in Marine Science, 44, 101718. https:// doi. org/ 10. 1016/j. rsma. 2021. 101718spa
dcterms.bibliographicCitationHalder, S., Samanta, K., Das, S., & Pathak, D. (2021). Monitoring the inter-decade spatial–temporal dynamics of the Sundarban mangrove forest of India from 1990 to 2019. Regional Studies in Marine Science, 44, 101718. https:// doi. org/ 10. 1016/j. rsma. 2021. 101718spa
dcterms.bibliographicCitationHamzah, M. L., Amir, A. A., Maulud, K. N. A., Sharma, S., Mohd, F. A., Selamat, S. N., Karim, O., Ariffin, E. H., & Begum, R. A. (2020). Assessment of the mangrove forest changes along the Pahang coast using remote sensing and gis technology. Journal of Sustainability Science and Management, 15(5), 43–58. https:// doi. org/ 10. 46754/ JSSM. 2020. 07. 006spa
dcterms.bibliographicCitationHeenkenda, M., Joyce, K., Maier, S., & Bartolo, R. (2014). Mangrove species identification: Comparing World- View-2 with aerial photographs. Remote Sensing, 6(7), 6064–6088. https:// doi. org/ 10. 3390/ rs607 6064spa
dcterms.bibliographicCitationHeumann, B. W. (2011). Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Progress in Physical Geography: Earth and Environment, 35(1), 87–108. https:// doi. org/ 10. 1177/ 03091 33310 385371spa
dcterms.bibliographicCitationHu, L., Xu, N., Liang, J., Li, Z., Chen, L., & Zhao, F. (2020). Advancing the mapping of mangrove forests at nationalscale using sentinel-1 and Sentinel-2 time-series data with Google Earth engine: A case study in China. Remote Sensing, 12(19), 3120. https:// doi. org/ 10. 3390/ rs121 93120spa
dcterms.bibliographicCitationIslam, Md. R., Khan, Md. N. I., Khan, Md. Z., & Roy, B. (2021). A three decade assessment of forest cover changes in Nijhum dwip national park using remote sensing and GIS. Environmental Challenges, 4, 1–17. https:// doi. org/ 10. 1016/j. envc. 2021. 100162spa
dcterms.bibliographicCitationJaelani, Malik A., & Djalil, A. R. (2021). Mangrove Changes in Pannikiang Island Barru Regency South Sulawesi. Journal of Physics: Conference Series, 1752(1), 1–6. https:// doi. org/ 10. 1088/ 1742- 6596/ 1752/1/ 012088spa
dcterms.bibliographicCitationJamaluddin, I., Chen, Y., Ridha, S. M., Mahyatar, P., & Ayudyanti, A. G. (2022). Two decades mangroves loss monitoring using random forest and Landsat data in East Luwu. Indonesia, 2000–2020, 282–296.spa
dcterms.bibliographicCitationKamaruddin, N. A., & Shigeo, F. (2018). Classification and change detection of Sabah mangrove forest using decision- tree learning technique. IOP Conference Series: Earth and Environmental Science, 169(1), 1–7. https:// doi. org/ 10. 1088/ 1755- 1315/ 169/1/ 012055spa
dcterms.bibliographicCitationKumar, M., Mondal, I., & Pham, Q. B. (2021). Monitoring forest landcover changes in the Eastern Sundarban of Bangladesh from 1989 to 2019. Acta Geophysica, 69(2), 561– 577. https:// doi. org/ 10. 1007/ s11600- 021- 00551-3spa
dcterms.bibliographicCitationLong, C., Dai, Z., Zhou, X., Mei, X., & Van Mai, C. (2021). Mapping mangrove forests in the Red River Delta. Vietnam. Forest Ecology and Management, 483, 118910. https:// doi. org/ 10. 1016/j. foreco. 2020. 118910spa
dcterms.bibliographicCitationMa, C., Ai, B., Zhao, J., Xu, X., & Huang, W. (2019). Change detection of mangrove forests in Coastal Guangdong during the past three decades based on remote sensing data. Remote Sensing, 11(8), 921. https:// doi. org/ 10. 3390/ rs110 80921spa
dcterms.bibliographicCitationMaurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: Mapping and monitoring ofmangrove ecosystem—A review. Complex and Intelligent Systems, 7(6), 2797–2818. https:// doi. org/ 10. 1007/ s40747- 021- 00457-zspa
dcterms.bibliographicCitationMayunga, J. S., & Uhinga, G. A. (2018). Mapping spatiotemporal distribution of mangroves in Mafia Island in Tanzania using Landsat imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4W8), 133–138. https:// doi. org/ 10. 5194/ isprs- archi ves- XLII-4- W8- 133- 2018spa
dcterms.bibliographicCitationMokhtar, E. S., Majid, M. A. A. A., Norman, M., Roslani, M. A., Nasirun, N., & Mohammad, Z. (2022). Mangrove area delineation using object-based classification on Sentinel-2 imagery: Tuba Island, Langkawi. IOP Conference Series: Earth and Environmental Science, 1019(1), 1–8. https:// doi. org/ 10. 1088/ 1755- 1315/ 1019/1/ 012019spa
dcterms.bibliographicCitationMondal, B., Saha, A. K., & Roy, A. (2021). Spatio-temporal pattern of change in mangrove populations along the coastal West Bengal. India. Environmental Challenges, 5, 100306. https:// doi. org/ 10. 1016/j. envc. 2021. 100306spa
dcterms.bibliographicCitationMonga, E., Mangora, M. M., & Mayunga, J. S. (2018). Mangrove cover change detection in the Rufiji Delta in Tanzania. Western Indian Ocean Journal of Marine Science, 17(2), 1. https:// doi. org/ 10. 4314/ wiojms. v17i2.1spa
dcterms.bibliographicCitationNguyen, L. D., Nguyen, C. T., Le, H. S., & Tran, B. Q. (2019). Mangrove mapping and above-ground biomass change detection using satellite images in coastal areas of Thai Binh Province. Vietnam. Forest and Society, 3(2), 248– 261. https:// doi. org/ 10. 24259/ fs. v3i2. 7326spa
dcterms.bibliographicCitationNguyen, H. H., Nghia, N. H., Nguyen, H. T. T., Le, A. T., Tran, L. T. N., Duong, L. V. K., Bohm, S., & Furniss, M. J. (2020). Classification methods for mapping mangrove extents and drivers of change in Thanh Hoa province, Vietnam during 2005–2018. Forest and Society, 4(1), 225–242. https:// doi. org/ 10. 24259/ fs. v4i1. 9295spa
dcterms.bibliographicCitationNguyen, H. H., Tran, L. T. N., Le, A. T., Nghia, N. H., Duong, L. V. K., Nguyen, H. T. T., Bohm, S., & Premnath, C. F. S. (2020). Monitoring changes in coastal mangrove extents using multi-temporal satellite data in selected communes, Hai Phong City. Vietnam. Forest and Society, 4(1), 256–270. https:// doi. org/ 10. 24259/ fs. v4i1. 8486spa
dcterms.bibliographicCitationNguyen, H. T. T., Hardy, G. E. S., Le, T. V., Nguyen, H. Q., Nguyen, H. H., Nguyen, T. V., & Dell, B. (2021a). Mangrove forest landcover changes in coastal Vietnam: A case study from 1973 to 2020 in thanh hoa and nghe an provinces. Forests, 12(5), 1–20. https:// doi. org/ 10. 3390/ f1205 0637spa
dcterms.bibliographicCitationNguyen, Q., Nguyen Hai, H., Vo Dai, N., & Pham Duy, Q. (2021b). Detecting changes in mangrove forests from multi-temporal sentinel-2 data in Tien Yen district Quang Ninh province. Tạp chí Khoa học và Công nghệ Lâm nghiệp. http:// elib. vnuf. edu. vn/ handle/ 12345 6789/ 18216spa
dcterms.bibliographicCitationNurhaliza, A. P., Damayanti, A., & Dimyati, M. (2021). Monitoring area and health changes of mangrove forest using multitemporal landsat imagery in Taman Hutan Raya Ngurah Rai, Bali Province. IOP Conference Series: Earth and Environmental Science, 673(1), 012050. https:// doi. org/ 10. 1088/ 1755- 1315/ 673/1/ 012050spa
dcterms.bibliographicCitationOlatunji, E.T., Charles, J.F.(2020). Change detection analysis of mangrove ecosystems in the Mesurado Wetland, Montserrado County, Liberia, IJRES 7, 17–24. RetrievedSeptember 4, 2023, from http:// bluep enjou rnals. org/ ijres/ pdf/ 2020/ Septe mber/ Olatu nji_ and_ Charl es. pdfspa
dcterms.bibliographicCitationOtero, V., Van De Kerchove, R., Satyanarayana, B., Mohd- Lokman, H., Lucas, R., & Dahdouh-Guebas, F. (2019). An analysis of the early regeneration of mangrove forests using Landsat time series in the Matang Mangrove Forest Reserve. Peninsular Malaysia. Remote Sensing, 11(7), 774. https:// doi. org/ 10. 3390/ rs110 70774spa
dcterms.bibliographicCitationParida, B. R., & Kumar, P. (2020). Mapping and dynamic analysis of mangrove forest during 2009–2019 using landsat– 5 and sentinel–2 satellite data along Odisha Coast. Tropical Ecology, 61(4), 538–549. https:// doi. org/ 10. 1007/ s42965- 020- 00112-7spa
dcterms.bibliographicCitationPasquarella, V. J., Holden, C. E., & Woodcock, C. E. (2018). Improved mapping of forest type using spectral-temporal Landsat features. Remote Sensing of Environment, 210, 193–207. https:// doi. org/ 10. 1016/j. rse. 2018. 02. 064spa
dcterms.bibliographicCitationPriyono, K. D. (2022). Identification of mangrove changes in the Mahakam delta in 2007-2017 using alos/palsar and Landsat. International Journal of GEOMATE, 23, 96. https:// doi. org/ 10. 21660/ 2022. 96. 3312spa
dcterms.bibliographicCitationPurwanto, A. D., Hikmah, N. I., Aprianto, A., & Rahmawati, E. (2021). Modelling spatio-temporal of mangrove ecosystem and community local wisdom in Taman Hutan Raya (Tahura), Ngurah Rai, Bali. International Journal on Advanced Science, Engineering and Information Technology, 11(4), 1642–1653. https:// doi. org/ 10. 18517/ ijase it. 11.4. 11711spa
dcterms.bibliographicCitationQuang, N. H., Quinn, C. H., Stringer, L. C., Carrie, R., Hackney, C. R., Van Hue, L. T., Tan, D. V., & Thanh Nga, P. T. (2020). Multi-decadal changes in mangrove extent, age and species in the Red River Estuaries of Viet Nam. Remote Sensing, 12(14), 1–25. https:// doi. org/ 10. 3390/ rs121 42289spa
dcterms.bibliographicCitationRahman, S., Hasan, M., Siddeqa, M., & Khanam, R. (2021). Spatio-temporal analysis of land use and land cover changes in Barguna district of Bangladesh using remote sensing techniques: Focusing on mangrove vegetation. Journal of Global Ecology and Environment, 11(4), 43–54.spa
dcterms.bibliographicCitationRahmawaty, Siahaan J., Nuryawan, A., Harahap, M. M., Ismail, M. H., Rauf, A., Kurniawan, H., Gandaseca, S., & Karuniasa, M. (2023). Mangrove cover change (2005-2019) in the Northern of Medan City, North Sumatra. Indonesia. Geocarto International, 38(1), 2228742. https:// doi. org/ 10. 1080/ 10106 049. 2023. 22287 42spa
dcterms.bibliographicCitationRosalina, D., Rombe, K. H., Surachmat, A., Amiluddin, M., & Leilani, A. (2023). Application of remote sensing and GIS for mapping changes in land area and mangrove density in the Kuri Caddi Mangrove tourism, South Sulawesi Province, Indonesia. Biodiversitas Journal of Biological Diversity, 24(2) https:// smujo. id/ biodiv/ artic le/ view/ 13299.spa
dcterms.bibliographicCitationRoy, S., Mahapatra, M., & Chakraborty, A. (2019). Mapping and monitoring of mangrove along the Odisha coast based on remote sensing and GIS techniques. Modeling Earth Systems and Environment, 5(1), 217–226. https:// doi. org/ 10. 1007/ s40808- 018- 0529-7spa
dcterms.bibliographicCitationSakti, A. D., Fauzi, A. I., Wilwatikta, F. N., Rajagukguk, Y. S., Sudhana, S. A., Yayusman, L. F., Syahid, L. N., Sritarapipat, T., Principe, J. A., Trang, N. T. Q., Sulistyawati, E.,Utami, I., Arief, C. W., & Wikantika, K. (2020). Multisource remote sensing data product analysis: Investigating anthropogenic and naturogenic impacts on mangroves in Southeast Asia. Remote Sensing, 12(17), 1–29. https:// doi. org/ 10. 3390/ rs121 72720spa
dcterms.bibliographicCitationSaravanan, S., Jegankumar, R., Selvaraj, A., Jacinth Jennifer, J., & Parthasarathy, K. S. S. (2018). UChapter 20—Utility of Landsat Data for Assessing Mangrove Degradation in Muthupet Lagoon, South India. In M. U. Ramkumar, R. A. James, D. Menier, & K. Kumaraswamy (Eds.), Coastal Zone Management (pp. 471–484). Elsevier. https:// doi. org/ 10. 1016/ B978-0- 12- 814350- 6. 00020-3spa
dcterms.bibliographicCitationShi, F., Liu, M., Qiu, J., Zhang, Y., Su, H., Mao, X., Li, X., Fan, J., Chen, J., Lv, Y., Xu, W., Wang, Z., & Li, M. (2022). Assessing land cover and ecological quality changes in the forest-steppe ecotone of the Greater Khingan Mountains, Northeast China, from Landsat and MODIS observations from 2000 to 2018. Remote Sensing, 14(3), 1–29. https:// doi. org/ 10. 3390/ rs140 30725spa
dcterms.bibliographicCitationSimarmata, N., Wikantika, K., Tarigan, T. A., Aldyansyah, M., & Tohir, R. K. (2021). Utilization of multitemporal imagery for analysis of changes in mangrove cover by Using Cloud Computing Method in the East Coast Region of Lampung Province. IOP Conference Series: Earth and Environmental Science, 830(1), 012013. https:// doi. org/ 10. 1088/ 1755- 1315/ 830/1/ 012013spa
dcterms.bibliographicCitationSuciani, A., Rahmadi, M. T., & Islami, Z. R. (2020). Analyzing mangrove forest area changes in coastal zone of Langsa City using Landsat imagery. IOP Conference Series: Earth and Environmental Science, 500(1), 1–8. https:// doi. org/ 10. 1088/ 1755- 1315/ 500/1/ 012084spa
dcterms.bibliographicCitationToosi, N. B., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L. T. (2019). Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, e00662, 1–16. https:// doi. org/ 10. 1016/j. gecco. 2019. e00662 Vu, T. T. P., Pham, T. D., Saintilan, N., Skidmospa
dcterms.bibliographicCitationVu, T. T. P., Pham, T. D., Saintilan, N., Skidmore, A., Luu, H. V., Vu, Q. H., Le, N. N., Nguyen, H. Q., &Matsushita, B. (2022). Mapping multi-decadal mangrove extent in the Northern Coast of Vietnam using Landsat time-series data on Google Earth engine platform. Remote Sensing, 14(18), 4664. https:// doi. org/ 10. 3390/ rs141 84664spa
dcterms.bibliographicCitationWang, M., Cao, W., Guan, Q., Wu, G., & Wang, F. (2018). Assessing changes of mangrove forest in a coastal region of southeast China using multi-temporal satellite images. Estuarine, Coastal and Shelf Science, 207, 283–292. https:// doi. org/ 10. 1016/j. ecss. 2018. 04. 021spa
dcterms.bibliographicCitationZhang, Z., Ahmed, M. R., Zhang, Q., Li, Y., & Li, Y. (2023). Monitoring of 35-year mangrove wetland change dynamics and agents in the sundarbans using temporal consistency checking. Remote Sensing, 15(3), 625. https:// doi. org/ 10. 3390/ rs150 30625spa
dcterms.bibliographicCitationZhao, Q., Yu, L., Du, Z., Peng, D., Hao, P., Zhang, Y., & Gong, P. (2022). An overview of the applications of earth observation satellite data: Impacts and future trends. Remote Sensing, 14(8), 1863. https:// doi. org/ 10. 3390/ rs140 81863spa
dcterms.bibliographicCitationZhu, B., Liao, J., & Shen, G. (2021). Combining time series and land cover data for analyzing spatio-temporal changes in mangrove forests: A case study of Qinglangang Nature Reserve, Hainan. China. Ecological Indicators, 131, 108135. https:// doi. org/ 10. 1016/j. ecoli nd. 2021. 108135spa
dcterms.bibliographicCitationZuhairi, A., Zaleha, K., Suhaila, Nur, & Muhammad Shaheed, S. (2019). Mapping mangrove degradation in Pahang river estuary, Pekan Pahang by using remote sensing. Science Heritage Journal, 3(2), 01–05. https:// doi. org/ 10. 26480/ gws. 02. 2019. 01. 05spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.33736/jcest.3339.2021
dc.subject.keywordsCoastal ecosystemspa
dc.subject.keywordsEstuarine ecosystemsspa
dc.subject.keywordsLandscape ecologyspa
dc.subject.keywordsGISspa
dc.subject.keywordsForest changespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.relation.iscitedbyAcceso abierto
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcScopus
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Ambientalspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.