Mostrar el registro sencillo del ítem

dc.contributor.authorMartinez, Elizabeth
dc.contributor.authorCuadrado, Juan
dc.contributor.authorMartinez-Santos, Juan Carlos
dc.date.accessioned2023-12-11T12:33:25Z
dc.date.available2023-12-11T12:33:25Z
dc.date.issued2022-11-22
dc.date.submitted2023-12-09
dc.identifier.citationMartinez, E., Cuadrado, J., & Martinez-Santos, J. C. (2022, November). Photovoltaic Power Predictor Module Based on Historical Production and Weather Conditions Data. In Workshop on Engineering Applications (pp. 461-472). Cham: Springer Nature Switzerland.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12588
dc.description.abstractIn recent years the demand for electrical energy has increased significantly. Usually, the electrical grid covers this demand. However, this fuel energy is known for its significant carbon footprint. For that reason, different mechanisms to bring cleaner energies have been explored, like hydraulic, wind, thermal, and one of the most popular solar energy. Although solar energy is abundant and environmentally friendly, the photovoltaic energy that comes from the sun, solar production is subject to different external perturbations, such as environmental conditions. Therefore it has been necessary to develop other methods based on statistics, machine learning, or deep learning to make solar forecasting and predict production and weather conditions. Specifically, this work proposes an evaluation of three different deep learning models to predict irradiance, temperature, and production of a photovoltaic system located in the city of Cartagena, Colombia. Those are irradiance and temperature using the historical data on production and weather conditions. This data has been registered on a web platform for seven months, from January 1, 2022, until June 28, 2022.spa
dc.format.extent12 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.titlePhotovoltaic power predictor module based on historical production and weather conditions dataspa
dcterms.bibliographicCitationF. Dincer, “The analysis on wind energy electricity generation status, potential and policies in the world,” Renewable and sustainable energy reviews, vol. 15, no. 9, pp. 5135–5142, 2011.spa
dcterms.bibliographicCitationP. E. Brockway, A. Owen, L. I. Brand-Correa, and L. Hardt, “Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renew able energy sources,” Nature Energy, vol. 4, no. 7, pp. 612–621, 2019.spa
dcterms.bibliographicCitationR. Aichele and G. Felbermayr, “Kyoto and the carbon footprint of nations,” Jour nal of Environmental Economics and Management, vol. 63, no. 3, pp. 336–354, 2012.spa
dcterms.bibliographicCitationK. Li, H. Bian, C. Liu, D. Zhang, and Y. Yang, “Comparison of geothermal with solar and wind power generation systems,” Renewable and Sustainable Energy Re views, vol. 42, pp. 1464–1474, 2015.spa
dcterms.bibliographicCitationR. Li, H.-N. Wang, H. He, Y.-M. Cui, and Z.-L. Du, “Support vector machine combined with k-nearest neighbors for solar flare forecasting,” Chinese Journal of Astronomy and Astrophysics, vol. 7, no. 3, p. 441, 2007.spa
dcterms.bibliographicCitationF. O. Hocao˘glu, O. N. Gerek, and M. Kurban, “Hourly solar radiation forecasting ¨ using optimal coefficient 2-d linear filters and feed-forward neural networks,” Solar energy, vol. 82, no. 8, pp. 714–726, 2008.spa
dcterms.bibliographicCitationZ. Pang, F. Niu, and Z. O’Neill, “Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons,” Renewable Energy, vol. 156, pp. 279–289, 2020.spa
dcterms.bibliographicCitationY. Jung, J. Jung, B. Kim, and S. Han, “Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar pv facilities: Case study of south korea,” Journal of Cleaner Production, vol. 250, p. 119476, 2020.spa
dcterms.bibliographicCitation. G. A. de Melo, D. N. Sugimoto, P. M. Tasinaffo, A. H. M. Santos, A. M. Cunha, and L. A. V. Dias, “A new approach to river flow forecasting: Lstm and gru multivariate models,” IEEE Latin America Transactions, vol. 17, no. 12, pp. 1978–1986, 2019.spa
dcterms.bibliographicCitationM. Ajith and M. Mart´ınez-Ram´on, “Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data,” Applied Energy, vol. 294, p. 117014, 2021.spa
dcterms.bibliographicCitationH. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng, “A review of deep learning for renewable energy forecasting,” Energy Conversion and Management, vol. 198, p. 111799, 2019.spa
dcterms.bibliographicCitationW. Li, H. Wu, N. Zhu, Y. Jiang, J. Tan, and Y. Guo, “Prediction of dissolved oxy gen in a fishery pond based on gated recurrent unit (gru),” Information Processing in Agriculture, vol. 8, no. 1, pp. 185–193, 2021.spa
dcterms.bibliographicCitationT. Yang, L. Zhao, W. Li, and A. Y. Zomaya, “Reinforcement learning in sustainable energy and electric systems: A survey,” Annual Reviews in Control, vol. 49, pp. 145– 163, 2020spa
dcterms.bibliographicCitationK. Cho, B. Van Merri¨enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/bookPartspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.1007/978-3-031-20611-5_38
dc.subject.keywordsCondition monitoringspa
dc.subject.keywordsDeep learningspa
dc.subject.keywordsEnergy productionspa
dc.subject.keywordsForecastingspa
dc.subject.keywordsPhoto voltaicspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa
dc.publisher.disciplineIngeniería de Sistemas y Computaciónspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.