Mostrar el registro sencillo del ítem
Advancements in quantum machine learning for intrusion detection: A comprehensive overview
dc.contributor.author | Payares, Esteban | |
dc.contributor.author | Martinez-Santos, Juan Carlos | |
dc.date.accessioned | 2023-12-11T12:28:37Z | |
dc.date.available | 2023-12-11T12:28:37Z | |
dc.date.issued | 2023-09-07 | |
dc.date.submitted | 2023-12-09 | |
dc.identifier.citation | Payares, E. & Martinez-Santos, J. C. (2023). Advancements in Quantum Machine Learning for Intrusion Detection: A Comprehensive Overview. In N. Mateus-Coelho & M. Cruz-Cunha (Eds.), Exploring Cyber Criminals and Data Privacy Measures (pp. 167-176). IGI Global. https://doi.org/10.4018/978-1-6684-8422-7.ch009 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12587 | |
dc.description.abstract | This chapter provides a comprehensive overview of the recent developments in quantum machine learning for intrusion detection systems. The authors review the state of the art based on the published work “Quantum Machine Learning for Intrusion Detection of Distributed Denial of Service Attacks: A Comparative View” and its relevant citations. The chapter discusses three quantum models, including quantum support vector machines, hybrid quantum-classical neural networks, and a two-circuit ensemble model, which run parallel on two quantum processing units. The authors compare the performance of these models in terms of accuracy and computational resource consumption. Their work demonstrates the effectiveness of quantum models in supporting current and future cybersecurity systems, achieving close to 100% accuracy, with 96% being the worst-case scenario. The chapter concludes with future research directions for this promising field. | spa |
dc.format.extent | 3 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Advancements in Quantum Machine Learning for Intrusion Detection | spa |
dc.title | Advancements in quantum machine learning for intrusion detection: A comprehensive overview | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/bookPart | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | DOI: 10.4018/978-1-6684-8422-7.ch009 | |
dc.subject.keywords | Quantum Machine Learning | spa |
dc.subject.keywords | Machine Learning | spa |
dc.subject.keywords | Quantum Computing | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_3248 | spa |
dc.publisher.discipline | Ingeniería de Sistemas y Computación | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.