Mostrar el registro sencillo del ítem

dc.contributor.authorCuadrado, Juan
dc.contributor.authorMartinez, Elizabeth
dc.contributor.authorMartinez-Santos, Juan Carlos
dc.contributor.authorPuertas, Edwin
dc.date.accessioned2023-12-06T19:38:33Z
dc.date.available2023-12-06T19:38:33Z
dc.date.issued2023-12-06
dc.date.submitted2023-12-06
dc.identifier.citationCuadrado, J., Martinez, E., Martinez-Santos, J. C., & Puertas, E. (2023). Team UTB-NLP at FinancES 2023: Financial Targeted Sentiment Analysis Using a Phonestheme Semantic Approach. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12584
dc.description.abstractSentiment analysis in the financial domain is a challenging task that plays a crucial role in understanding public opinion, monitoring market trends, and assessing the impact of news on economic agents. In this shared task, we address targeted sentiment analysis in the financial domain, focusing on identifying the main economic target in news headlines and determining the sentiment polarity towards such targets. We propose a methodology that combines transformer-based models and phonestheme embeddings to extract meaningful features from the text, which are then used in a support vector machine (SVM) classifier for sentiment classification. Our approach shows promising results, outperforming the baseline with an F1-score of 0.529229 in Task 1. This research contributes to financial sentiment analysis by addressing the complexity of financial language and considering multiple economic agents' perspectives.spa
dc.description.sponsorshipUniversidad Tecnológica de Bolívarspa
dc.format.extent12 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIberian Languages Evaluation Forumspa
dc.titleteam UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approachspa
dcterms.bibliographicCitationBowles, S. (2003). Microeconomics: behavior, institutions, and evolution. Princeton University Press.spa
dcterms.bibliographicCitationHasan, M. M., Popp, J., & Oláh, J. (2020). Current landscape and influence of big data on finance. Journal of Big Data, 7(1), 1-17.spa
dcterms.bibliographicCitationPuertas, E., Martinez-Santos, J. C., & Pertuz-Duran, P. A. (2022, November). Presidential preferences in Colombia through Sentiment Analysis. In 2022 IEEE ANDESCON (pp. 1-5). IEEE.spa
dcterms.bibliographicCitationGeorge, A. S., George, A. H., Baskar, T., & Martin, A. G. (2023). Human Insight AI: An Innovative Technology Bridging The Gap Between Humans And Machines For a Safe, Sustainable Future. Partners Universal International Research Journal, 2(1), 1-15.spa
dcterms.bibliographicCitationMan, X., Luo, T., & Lin, J. (2019, May). Financial sentiment analysis (fsa): A survey. In 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS) (pp. 617-622). IEEE.spa
dcterms.bibliographicCitationZhao, L., Li, L., Zheng, X., & Zhang, J. (2021, May). A BERT based sentiment analysis and key entity detection approach for online financial texts. In 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 1233-1238). IEEE.spa
dcterms.bibliographicCitationDashtipour, K., Gogate, M., Li, J., Jiang, F., Kong, B., & Hussain, A. (2020). A hybrid Persian sentiment analysis framework: Integrating dependency grammar based rules and deep neural networks. Neurocomputing, 380, 1-10.spa
dcterms.bibliographicCitationGuarasci, R., Silvestri, S., De Pietro, G., Fujita, H., & Esposito, M. (2023). Assessing BERT’s ability to learn Italian syntax: A study on null-subject and agreement phenomena. Journal of Ambient Intelligence and Humanized Computing, 14(1), 289-303.spa
dcterms.bibliographicCitationGarcía-Díaz, J. A., García-Sánchez, F., & Valencia-García, R. (2023). Smart analysis of economics sentiment in Spanish based on linguistic features and transformers. IEEE Access, 11, 14211-14224.spa
dcterms.bibliographicCitationIshizuka, K., & Nakata, K. (2021, April). Text Mining for Factor Modeling of Japanese Stock Performance. In 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 538-542). IEEE.spa
dcterms.bibliographicCitationGutiérrez-Fandiño, A., Kolm, P. N., i Alonso, M. N., & Armengol-Estapé, J. (2022). FinEAS: Financial Embedding Analysis of Sentiment. The Journal of Financial Data Science, 4(3), 45-53.spa
dcterms.bibliographicCitationJiménez-Zafra, S. M., Rangel, F., & Gómez, M. M. Y. (2023). Overview of IberLEF 2023: Natural Language Processing Challenges for Spanish and other Iberian Languages. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS. org.spa
dcterms.bibliographicCitationGarcia-Díaz, J. A., Almela, Á., García-Sánchez, F., Alcaraz-Mármol, G., Marín, M. J., & Valencia-García, R. (2023). Overview of FinancES 2023: Financial Targeted Sentiment Analysis in Spanish. Procesamiento del Lenguaje Natural, 71, 417-423.spa
dcterms.bibliographicCitationGarcía-Díaz, J. A., Salas-Zárate, M. P., Hernández-Alcaraz, M. L., Valencia-García, R., & Gómez-Berbís, J. M. (2018). Machine learning based sentiment analysis on Spanish financial tweets. In Trends and Advances in Information Systems and Technologies: Volume 1 6 (pp. 305-311). Springer International Publishing.spa
dcterms.bibliographicCitationSun, F., Belatreche, A., Coleman, S., McGinnity, T. M., & Li, Y. (2014, March). Pre-processing online financial text for sentiment classification: A natural language processing approach. In 2014 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr) (pp. 122-129). IEEE.spa
dcterms.bibliographicCitationPuertas, E., & Martinez-Santos, J. C. (2021). Phonetic detection for hate speech spreaders on Twitter.spa
dcterms.bibliographicCitationHusein, A. M., Sipahutar, B., Dashuah, R., & Hutauruk, E. (2023). Sentiment Analysis Od Face To Face School Policy On Twitter Social Media With Support Vector Machine (SVM). Sinkron: jurnal dan penelitian teknik informatika, 8(1), 480-486.spa
dcterms.bibliographicCitationPuertas, E. (2020). Embedding of phonestheme in Spanish (1.0). Zenodo. https://doi.org/10.5281/zenodo.4299242spa
dcterms.bibliographicCitationMoreno-Sandoval, L. G., Del Castillo, E. A. P., Quimbaya, A. P., & Alvarado-Valencia, J. A. (2020). Assembly of Polarity, Emotion and User Statistics for Detection of Fake Profiles. In CLEF (Working Notes).spa
dcterms.bibliographicCitationHays, C., Schutzman, Z., Raghavan, M., Walk, E., & Zimmer, P. (2023, April). Simplistic Collection and Labeling Practices Limit the Utility of Benchmark Datasets for Twitter Bot Detection. In Proceedings of the ACM Web Conference 2023 (pp. 3660-3669).spa
dcterms.bibliographicCitationNemes, L., & Kiss, A. (2021). Prediction of stock values changes using sentiment analysis of stock news headlines. Journal of Information and Telecommunication, 5(3), 375-394.spa
dcterms.bibliographicCitationZhang, H., Li, Z., Xie, H., Lau, R. Y., Cheng, G., Li, Q., & Zhang, D. (2022). Leveraging statistical information in fine-grained financial sentiment analysis. World Wide Web, 25(2), 513-531.spa
dcterms.bibliographicCitationAraci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063.spa
dcterms.bibliographicCitationValle-Cruz, D., Fernandez-Cortez, V., López-Chau, A., & Sandoval-Almazán, R. (2022). Does twitter affect stock market decisions? financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods. Cognitive computation, 1-16.spa
dcterms.bibliographicCitationPuertas Del Castillo, E. A. Análisis de elementos fonéticos y elementos emocionales para predecir la polaridad en fuentes de microblogging.spa
dcterms.bibliographicCitationPuertas, E., Moreno-Sandoval, L. G., Redondo, J., Alvarado-Valencia, J. A., & Pomares-Quimbaya, A. (2021). Detection of sociolinguistic features in digital social networks for the detection of communities. Cognitive Computation, 13, 518-537.spa
dcterms.bibliographicCitationPan, R., García-Díaz, J. A., Garcia-Sanchez, F., & Valencia-García, R. (2023). Evaluation of transformer models for financial targeted sentiment analysis in Spanish. PeerJ Computer Science, 9, e1377.spa
dcterms.bibliographicCitationPérez, J. M., Furman, D. A., Alemany, L. A., & Luque, F. (2021). Robertuito: a pre-trained language model for social media text in spanish. arXiv preprint arXiv:2111.09453.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.identifier.urlhttps://ceur-ws.org/Vol-3496/finances-paper4.pdf
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.subject.keywordsEmbeddingsspa
dc.subject.keywordsFinancESspa
dc.subject.keywordsPhonesthemespa
dc.subject.keywordsSentiment Analysisspa
dc.subject.keywordsTransformersspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.disciplineMaestría en Ingenieríaspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.