Mostrar el registro sencillo del ítem
team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach
dc.contributor.author | Cuadrado, Juan | |
dc.contributor.author | Martinez, Elizabeth | |
dc.contributor.author | Martinez-Santos, Juan Carlos | |
dc.contributor.author | Puertas, Edwin | |
dc.date.accessioned | 2023-12-06T19:38:33Z | |
dc.date.available | 2023-12-06T19:38:33Z | |
dc.date.issued | 2023-12-06 | |
dc.date.submitted | 2023-12-06 | |
dc.identifier.citation | Cuadrado, J., Martinez, E., Martinez-Santos, J. C., & Puertas, E. (2023). Team UTB-NLP at FinancES 2023: Financial Targeted Sentiment Analysis Using a Phonestheme Semantic Approach. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12584 | |
dc.description.abstract | Sentiment analysis in the financial domain is a challenging task that plays a crucial role in understanding public opinion, monitoring market trends, and assessing the impact of news on economic agents. In this shared task, we address targeted sentiment analysis in the financial domain, focusing on identifying the main economic target in news headlines and determining the sentiment polarity towards such targets. We propose a methodology that combines transformer-based models and phonestheme embeddings to extract meaningful features from the text, which are then used in a support vector machine (SVM) classifier for sentiment classification. Our approach shows promising results, outperforming the baseline with an F1-score of 0.529229 in Task 1. This research contributes to financial sentiment analysis by addressing the complexity of financial language and considering multiple economic agents' perspectives. | spa |
dc.description.sponsorship | Universidad Tecnológica de Bolívar | spa |
dc.format.extent | 12 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Iberian Languages Evaluation Forum | spa |
dc.title | team UTB-NLP at finances 2023: financial targeted sentiment analysis using a phonestheme semantic approach | spa |
dcterms.bibliographicCitation | Bowles, S. (2003). Microeconomics: behavior, institutions, and evolution. Princeton University Press. | spa |
dcterms.bibliographicCitation | Hasan, M. M., Popp, J., & Oláh, J. (2020). Current landscape and influence of big data on finance. Journal of Big Data, 7(1), 1-17. | spa |
dcterms.bibliographicCitation | Puertas, E., Martinez-Santos, J. C., & Pertuz-Duran, P. A. (2022, November). Presidential preferences in Colombia through Sentiment Analysis. In 2022 IEEE ANDESCON (pp. 1-5). IEEE. | spa |
dcterms.bibliographicCitation | George, A. S., George, A. H., Baskar, T., & Martin, A. G. (2023). Human Insight AI: An Innovative Technology Bridging The Gap Between Humans And Machines For a Safe, Sustainable Future. Partners Universal International Research Journal, 2(1), 1-15. | spa |
dcterms.bibliographicCitation | Man, X., Luo, T., & Lin, J. (2019, May). Financial sentiment analysis (fsa): A survey. In 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS) (pp. 617-622). IEEE. | spa |
dcterms.bibliographicCitation | Zhao, L., Li, L., Zheng, X., & Zhang, J. (2021, May). A BERT based sentiment analysis and key entity detection approach for online financial texts. In 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 1233-1238). IEEE. | spa |
dcterms.bibliographicCitation | Dashtipour, K., Gogate, M., Li, J., Jiang, F., Kong, B., & Hussain, A. (2020). A hybrid Persian sentiment analysis framework: Integrating dependency grammar based rules and deep neural networks. Neurocomputing, 380, 1-10. | spa |
dcterms.bibliographicCitation | Guarasci, R., Silvestri, S., De Pietro, G., Fujita, H., & Esposito, M. (2023). Assessing BERT’s ability to learn Italian syntax: A study on null-subject and agreement phenomena. Journal of Ambient Intelligence and Humanized Computing, 14(1), 289-303. | spa |
dcterms.bibliographicCitation | García-Díaz, J. A., García-Sánchez, F., & Valencia-García, R. (2023). Smart analysis of economics sentiment in Spanish based on linguistic features and transformers. IEEE Access, 11, 14211-14224. | spa |
dcterms.bibliographicCitation | Ishizuka, K., & Nakata, K. (2021, April). Text Mining for Factor Modeling of Japanese Stock Performance. In 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 538-542). IEEE. | spa |
dcterms.bibliographicCitation | Gutiérrez-Fandiño, A., Kolm, P. N., i Alonso, M. N., & Armengol-Estapé, J. (2022). FinEAS: Financial Embedding Analysis of Sentiment. The Journal of Financial Data Science, 4(3), 45-53. | spa |
dcterms.bibliographicCitation | Jiménez-Zafra, S. M., Rangel, F., & Gómez, M. M. Y. (2023). Overview of IberLEF 2023: Natural Language Processing Challenges for Spanish and other Iberian Languages. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS. org. | spa |
dcterms.bibliographicCitation | Garcia-Díaz, J. A., Almela, Á., García-Sánchez, F., Alcaraz-Mármol, G., Marín, M. J., & Valencia-García, R. (2023). Overview of FinancES 2023: Financial Targeted Sentiment Analysis in Spanish. Procesamiento del Lenguaje Natural, 71, 417-423. | spa |
dcterms.bibliographicCitation | García-Díaz, J. A., Salas-Zárate, M. P., Hernández-Alcaraz, M. L., Valencia-García, R., & Gómez-Berbís, J. M. (2018). Machine learning based sentiment analysis on Spanish financial tweets. In Trends and Advances in Information Systems and Technologies: Volume 1 6 (pp. 305-311). Springer International Publishing. | spa |
dcterms.bibliographicCitation | Sun, F., Belatreche, A., Coleman, S., McGinnity, T. M., & Li, Y. (2014, March). Pre-processing online financial text for sentiment classification: A natural language processing approach. In 2014 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr) (pp. 122-129). IEEE. | spa |
dcterms.bibliographicCitation | Puertas, E., & Martinez-Santos, J. C. (2021). Phonetic detection for hate speech spreaders on Twitter. | spa |
dcterms.bibliographicCitation | Husein, A. M., Sipahutar, B., Dashuah, R., & Hutauruk, E. (2023). Sentiment Analysis Od Face To Face School Policy On Twitter Social Media With Support Vector Machine (SVM). Sinkron: jurnal dan penelitian teknik informatika, 8(1), 480-486. | spa |
dcterms.bibliographicCitation | Puertas, E. (2020). Embedding of phonestheme in Spanish (1.0). Zenodo. https://doi.org/10.5281/zenodo.4299242 | spa |
dcterms.bibliographicCitation | Moreno-Sandoval, L. G., Del Castillo, E. A. P., Quimbaya, A. P., & Alvarado-Valencia, J. A. (2020). Assembly of Polarity, Emotion and User Statistics for Detection of Fake Profiles. In CLEF (Working Notes). | spa |
dcterms.bibliographicCitation | Hays, C., Schutzman, Z., Raghavan, M., Walk, E., & Zimmer, P. (2023, April). Simplistic Collection and Labeling Practices Limit the Utility of Benchmark Datasets for Twitter Bot Detection. In Proceedings of the ACM Web Conference 2023 (pp. 3660-3669). | spa |
dcterms.bibliographicCitation | Nemes, L., & Kiss, A. (2021). Prediction of stock values changes using sentiment analysis of stock news headlines. Journal of Information and Telecommunication, 5(3), 375-394. | spa |
dcterms.bibliographicCitation | Zhang, H., Li, Z., Xie, H., Lau, R. Y., Cheng, G., Li, Q., & Zhang, D. (2022). Leveraging statistical information in fine-grained financial sentiment analysis. World Wide Web, 25(2), 513-531. | spa |
dcterms.bibliographicCitation | Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063. | spa |
dcterms.bibliographicCitation | Valle-Cruz, D., Fernandez-Cortez, V., López-Chau, A., & Sandoval-Almazán, R. (2022). Does twitter affect stock market decisions? financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods. Cognitive computation, 1-16. | spa |
dcterms.bibliographicCitation | Puertas Del Castillo, E. A. Análisis de elementos fonéticos y elementos emocionales para predecir la polaridad en fuentes de microblogging. | spa |
dcterms.bibliographicCitation | Puertas, E., Moreno-Sandoval, L. G., Redondo, J., Alvarado-Valencia, J. A., & Pomares-Quimbaya, A. (2021). Detection of sociolinguistic features in digital social networks for the detection of communities. Cognitive Computation, 13, 518-537. | spa |
dcterms.bibliographicCitation | Pan, R., García-Díaz, J. A., Garcia-Sanchez, F., & Valencia-García, R. (2023). Evaluation of transformer models for financial targeted sentiment analysis in Spanish. PeerJ Computer Science, 9, e1377. | spa |
dcterms.bibliographicCitation | Pérez, J. M., Furman, D. A., Alemany, L. A., & Luque, F. (2021). Robertuito: a pre-trained language model for social media text in spanish. arXiv preprint arXiv:2111.09453. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.identifier.url | https://ceur-ws.org/Vol-3496/finances-paper4.pdf | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.subject.keywords | Embeddings | spa |
dc.subject.keywords | FinancES | spa |
dc.subject.keywords | Phonestheme | spa |
dc.subject.keywords | Sentiment Analysis | spa |
dc.subject.keywords | Transformers | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
dc.publisher.discipline | Maestría en Ingeniería | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.