Mostrar el registro sencillo del ítem

dc.contributor.authorMartinez, Elizabeth
dc.contributor.authorCuadrado, Juan
dc.contributor.authorMartinez-Santos, Juan Carlos
dc.contributor.authorPeña, Daniel
dc.contributor.authorPuertas, Edwin
dc.date.accessioned2023-12-06T16:09:43Z
dc.date.available2023-12-06T16:09:43Z
dc.date.issued2023-12-05
dc.date.submitted2023-12-05
dc.identifier.citationMartinez, E., Cuadrado, J., Peña, D., Martinez-Santos, J. C., & Puertas, E. (2023). Automated Depression Detection in Text Data: Leveraging Lexical Features, phonesthemes Embedding, and RoBERTa Transformer Model. In IberLEF (Working Notes). CEUR Workshop Proceedings.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12583
dc.description.abstractIndexed keywords SciVal Topics Metrics Funding details Abstract Depression is a prevalent mental disorder characterized by persistent sadness, lack of interest, and diminished pleasure. Detecting depression is crucial for timely intervention and support. In this paper, we address the task of depression detection in text data, focusing on binary classification and regression. We present our approach, leveraging a dataset comprising labeled messages from Telegram groups related to mental disorders. We begin by exploring the existing literature on depression detection, highlighting the challenges faced and the methods employed. Our approach involves data pre-processing, lexical feature extraction, phonesthemes embedding, and using the RoBERTa transformer model. We achieved promising results in the training phase through rigorous experimentation and model refinement. However, we encountered challenges upon evaluating our approach in the MentalRiskEs evaluation. We identified areas for improvement, particularly in latency and speed of detection for real-time monitoring of depression-related risks. This research contributes to the ongoing efforts in automating depression detection and provides insights into the potential of text analysis techniques for mental health assessment. We remain committed to further enhancing our methodology and advancing the field to improve the well-being of individuals affected by depression.spa
dc.description.sponsorshipUniversidad Tecnológica de Bolívarspa
dc.format.extent14 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIberian Languages Evaluation Forumspa
dc.titleAutomated depression detection in text data: leveraging lexical features, phonesthemes embedding, and roberta transformer modelspa
dcterms.bibliographicCitationWasserman, D., Iosue, M., Wuestefeld, A., & Carli, V. (2020). Adaptation of evidence‐based suicide prevention strategies during and after the COVID‐19 pandemic. World psychiatry, 19(3), 294-306.spa
dcterms.bibliographicCitationKim, H., Lee, S., Lee, S., Hong, S., Kang, H., & Kim, N. (2019). Depression prediction by using ecological momentary assessment, actiwatch data, and machine learning: observational study on older adults living alone. JMIR mHealth and uHealth, 7(10), e14149.spa
dcterms.bibliographicCitationBolton, J. M., Gunnell, D., & Turecki, G. (2015). Suicide risk assessment and intervention in people with mental illness. Bmj, 351.spa
dcterms.bibliographicCitationHirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266.spa
dcterms.bibliographicCitationPuertas, E., Moreno-Sandoval, L. G., Plaza-del Arco, F. M., Alvarado-Valencia, J. A., Pomares-Quimbaya, A., & Alfonso, L. (2019). Bots and gender profiling on twitter using sociolinguistic features. CLEF (Working Notes), 1-8.spa
dcterms.bibliographicCitationMoreno-Sandoval, L. G., Puertas, E., Plaza-del-Arco, F. M., Pomares-Quimbaya, A., Alvarado-Valencia, J. A., & Alfonso, L. (2019). Celebrity profiling on twitter using sociolinguistic. CLEF (Working Notes).spa
dcterms.bibliographicCitationPuertas, E., Moreno-Sandoval, L. G., Redondo, J., Alvarado-Valencia, J. A., & Pomares-Quimbaya, A. (2021). Detection of sociolinguistic features in digital social networks for the detection of communities. Cognitive Computation, 13, 518-537.spa
dcterms.bibliographicCitationKabir, M., Ahmed, T., Hasan, M. B., Laskar, M. T. R., Joarder, T. K., Mahmud, H., & Hasan, K. (2023). DEPTWEET: A typology for social media texts to detect depression severities. Computers in Human Behavior, 139, 107503.spa
dcterms.bibliographicCitationShoaib, M., Shah, B., Ei-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., ... & Ali, F. (2023). An advanced deep learning models-based plant disease detection: A review of recent research. Frontiers in Plant Science, 14, 1158933.spa
dcterms.bibliographicCitationMármol-Romero, A. M., Moreno-Muñoz, A., Plaza-del-Arco, F. M., Molina-González, M. D., Martín-Valdivia, M. T., Ureña-López, L. A., & Montejo-Raéz, A. (2023). Overview of MentalriskES at IberLEF 2023: Early Detection of Mental Disorders Risk in Spanish. Procesamiento del Lenguaje Natural, 71, 329-350.spa
dcterms.bibliographicCitationPuertas, E. A. (2023). Análisis de elementos fonéticos y elementos emocionales para predecir la polaridad en fuentes de microblogging. Recuperado de: http://hdl.handle.net/10554/63548.spa
dcterms.bibliographicCitationPérez, J. M., Furman, D. A., Alemany, L. A., & Luque, F. (2021). RoBERTuito: A pre-trained language model for social media text in Spanish. ArXiv. /abs/2111.09453spa
dcterms.bibliographicCitationHuang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., & Xu, W. (2018). Applications of support vector machine (SVM) learning in cancer genomics. Cancer genomics & proteomics, 15(1), 41-51.spa
dcterms.bibliographicCitationPuertas, E., & Martinez-Santos, J. C. (2021). Phonetic detection for hate speech spreaders on Twitter.spa
dcterms.bibliographicCitationDe Choudhury, M., Gamon, M., Counts, S., & Horvitz, E. (2013). Predicting depression via social media. In Proceedings of the international AAAI conference on web and social media (Vol. 7, No. 1, pp. 128-137).spa
dcterms.bibliographicCitationDi Cara, N. H., Maggio, V., Davis, O. S., & Haworth, C. M. (2023). Methodologies for monitoring mental health on Twitter: systematic review. Journal of Medical Internet Research, 25, e42734.spa
dcterms.bibliographicCitationBurdisso, S. G., Errecalde, M., & Montes-y-Gómez, M. (2019). A text classification framework for simple and effective early depression detection over social media streams. Expert Systems with Applications, 133, 182-197.spa
dcterms.bibliographicCitationChiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine, 135, 104499.spa
dcterms.bibliographicCitationAmanat, A., Rizwan, M., Javed, A. R., Abdelhaq, M., Alsaqour, R., Pandya, S., & Uddin, M. (2022). Deep learning for depression detection from textual data. Electronics, 11(5), 676.spa
dcterms.bibliographicCitationBabu, N. V., & Kanaga, E. G. M. (2022). Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Computer Science, 3, 1-20.spa
dcterms.bibliographicCitationMustafa, R. U., Ashraf, N., Ahmed, F. S., Ferzund, J., Shahzad, B., & Gelbukh, A. (2020). A multiclass depression detection in social media based on sentiment analysis. In 17th International Conference on Information Technology–New Generations (ITNG 2020) (pp. 659-662). Springer International Publishing.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.identifier.urlhttps://ceur-ws.org/Vol-3496/mentalriskes-paper15.pdf
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsDepressionspa
dc.subject.keywordsLexical Featuresspa
dc.subject.keywordsMental Riskspa
dc.subject.keywordsPhonesthemes Embeddingspa
dc.subject.keywordsTransformersspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.relation.iscitedbyMartinez, E., Cuadrado, J., Peña, D., Martinez-Santos, J. C., & Puertas, E. (2023). Automated Depression Detection in Text Data: Leveraging Lexical Features, phonesthemes Embedding, and RoBERTa Transformer Model. In IberLEF (Working Notes). CEUR Workshop Proceedings.
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.disciplineMaestría en Ingenieríaspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.