Mostrar el registro sencillo del ítem
Land-Use Dynamics and Water Quality in Andean Basins
dc.contributor.author | Ruiz-Ordóñez, Diana Marcela | |
dc.contributor.author | Solano-Correa, Yady Tatiana | |
dc.contributor.author | Maysels, Rachael | |
dc.contributor.author | Casas-Figueroa, Apolinar | |
dc.date.accessioned | 2023-11-20T12:48:25Z | |
dc.date.available | 2023-11-20T12:48:25Z | |
dc.date.issued | 2023-11-15 | |
dc.date.submitted | 2023-11-17 | |
dc.identifier.citation | Ruiz-Ordóñez, D.M.; Solano-Correa, Y.T.; Maysels, R.; Figueroa-Casas, A. Land-Use Dynamics and Water Quality in Andean Basins. Sustainability 2023, 15, 15965. https://doi.org/10.3390/su152215965 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12567 | |
dc.description.abstract | Conventional agricultural practices, such as the use of agrochemicals, implementation of monocultures, and the expansion of crops in strategic ecosystems, have significant impacts in Andean basins, directly increasing nutrient inputs to waterways, and contributing to ecological fragility and socioeconomic vulnerability. This complex dynamic is related to land-use change and production activities that affect the provision of hydrological ecosystem services. This study presents an integrated analysis of socioecological interactions related to water quality in the Las Piedras River basin (LPRB), a water supply basin located in the Andean region of southwestern Colombia. The analysis was conducted over a five-year monitoring period to assess the spatiotemporal variation and correlation of water quality between streams and agricultural runoff water within the LPRB. Furthermore, water quality indices were calculated based on physicochemical and biological parameters to evaluate the impact of land-use/land-cover changes and agricultural activities within the basin. Results demonstrate that different types of actors, productive logics, mechanisms of use, and access to water within the basin affect water quality and uncertainty for water management, while facing socioecological conflicts between actors. | spa |
dc.format.extent | 24 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Sustainability | spa |
dc.title | Land-Use Dynamics and Water Quality in Andean Basins | spa |
dcterms.bibliographicCitation | 1. Glavan, M.; Ceglar, A.; Pintar, M. Assessing the Impacts of Climate Change on Water Quantity and Quality Modelling in Small Slovenian Mediterranean Catchment—Lesson for Policy and Decision Makers. Hydrol. Process. 2015, 29, 3124–3144. https://doi.org/10.1002/hyp.10429 | spa |
dcterms.bibliographicCitation | 2. Nowak-Olejnik, A.; Schirpke, U.; Tappeiner, U. A Systematic Review on Subjective Well-Being Benefits Associated with Cultural Ecosystem Services. Ecosyst. Serv. 2022, 57, 101467. https://doi.org/10.1016/j.ecoser.2022.101467. | spa |
dcterms.bibliographicCitation | 3. Ma, S.; Li, Y.; Zhang, Y.; Wang, L.-J.; Jiang, J.; Zhang, J. Distinguishing the Relative Contributions of Climate and Land Use/Cover Changes to Ecosystem Services from a Geospatial Perspective. Ecol. Indic. 2022, 136, 108645. https://doi.org/10.1016/j.ecolind.2022.108645 | spa |
dcterms.bibliographicCitation | 4. Ulrich, W.; Batáry, P.; Baudry, J.; Beaumelle, L.; Bucher, R.; Čerevková, A.; de la Riva, E.G.; Felipe-Lucia, M.R.; Gallé, R.; Kesse-Guyot, E.; et al. From Biodiversity to Health: Quantifying the Impact of Diverse Ecosystems on Human Well-Being. People Nat. 2023, 5, 69–83. https://doi.org/10.1002/pan3.10421 | spa |
dcterms.bibliographicCitation | 5. Hernández Vidal, N.; Merlinsky, G.; Bolados, P. Defending the Commons: New Frontiers in Latin American Perspectives on Environmental Justice. Sociol. Inq. 2023, 93, 370–391. https://doi.org/10.1111/soin.12525 | spa |
dcterms.bibliographicCitation | 6. Prasad, P.V.V.; Bhatnagar, N.; Bhandari, V.; Jacob, G.; Narayan, K.; Echeverría, R.; Beintema, N.; Farah Cox, P.; Compton, J. Patterns of Investment in Agricultural Research and Innovation for the Global South, with a Focus on Sustainable Agricultural Intensification. Front. Sustain. Food Syst. 2023, 7, 1108949 | spa |
dcterms.bibliographicCitation | 7. Mikulewicz, N.J.W.C.; Michael, K.M. (Eds.) Climate Justice in the Majority World: Vulnerability, Resistance, and Diverse Knowledges; Routledge: London, UK, 2023; ISBN 978-1-00-321402-1 | spa |
dcterms.bibliographicCitation | 8. Pahl-Wostl, C. An Evolutionary Perspective on Water Governance: From Understanding to Transformation. Water Resour. Manag. 2017, 31, 2917–2932. https://doi.org/10.1007/s11269-017-1727-1 | spa |
dcterms.bibliographicCitation | 9. Pablo-Romero, M.P.; Sánchez-Braza, A.; Gil-Pérez, J. Is Deforestation Needed for Growth? Testing the EKC Hypothesis for Latin America. For. Policy Econ. 2023, 148, 102915. https://doi.org/10.1016/j.forpol.2023.102915 | spa |
dcterms.bibliographicCitation | 10. Ministerio del Medio Ambiente. V Informe Nacional de Biodiversidad de Colombia ante el Convenio de Biodiversidad Biológica; Mi-nisterio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2014; p. 80 | spa |
dcterms.bibliographicCitation | 11. Winton, R.S.; López-Casas, S.; Valencia-Rodríguez, D.; Bernal-Forero, C.; Delgado, J.; Wehrli, B.; Jiménez-Segura, L. Patterns and Drivers of Water Quality Changes Associated with Dams in the Tropical Andes. Hydrol. Earth Syst. Sci. 2023, 27, 1493–1505. https://doi.org/10.5194/hess-27-1493-2023 | spa |
dcterms.bibliographicCitation | 12. Arias Montevechio, E.; Crispin Cunya, M.; Fernández Jorquera, F.; Rendon, E.; Vásquez-Lavin, F.; Stehr, A.; Ponce Oliva, R.D. Traditional Crops and Climate Change Adaptation: Insights from the Andean Agricultural Sector. Clim. Dev. 2023, 15, 723–737. https://doi.org/10.1080/17565529.2022.2151307 | spa |
dcterms.bibliographicCitation | 13. Himanshu, S.K.; Ale, S.; Bordovsky, J.P.; Kim, J.; Samanta, S.; Omani, N.; Barnes, E.M. Assessing the Impacts of Irrigation Termination Periods on Cotton Productivity under Strategic Deficit Irrigation Regimes. Sci. Rep. 2021, 11, 20102. https://doi.org/10.1038/s41598-021-99472-w | spa |
dcterms.bibliographicCitation | 14. Munoz, H.M.; Martens, L.; Löhr, K.; Bonatti, M.; Chara, J.; Perez, L.; Sieber, S.; Castro-Nunez, A. Integrating Climate Mitigation and Environmental Peacebuilding Objectives through Sustainable Land Use Systems: Theory of Change and Indicators. PLOS Clim. 2023, 2, e0000075. https://doi.org/10.1371/journal.pclm.0000075 | spa |
dcterms.bibliographicCitation | 15. Barrios Latorre, S.A.; Sadovska, V.; Chongtham, I.R. Perspectives on Agroecological Transition: The Case of Guachetá Mu-nicipality, Colombia. Agroecol. Sustain. Food Syst. 2023, 47, 382–412. https://doi.org/10.1080/21683565.2022.2163449 | spa |
dcterms.bibliographicCitation | 16. Ruiz, D.; Martínez, J.P.; Figueroa, A. Importancia del “efecto rebote” o paradoja de Jevons en el diseño de la política ambiental. Rev. Ing. Univ. De Medellín 2015, 14, 49–59. https://doi.org/10.22395/rium.v14n27a3 | spa |
dcterms.bibliographicCitation | 17. Munar, A.M.; Mendez, N.; Narvaez, G.; Campo Zambrano, F.; Motta-Marques, D.; Lyra Fialho Brêda, J.P.; Santos Fleischmann, A.; Angarita, H. Modelling the Climate Change Impacts on River Discharge and Inundation Extent in the Magdalena River Basin—Colombia. Hydrol. Sci. J. 2023, 68, 1286–1300. https://doi.org/10.1080/02626667.2023.2215932 | spa |
dcterms.bibliographicCitation | 18. Gobierno de Colombia. Colombia—Monitoreo de territorios afectados por cultivos ilícitos 2021; Oficina de las Naciones Unidas contra la Droga y el Delito: Colombia, 2022; p. 173 | spa |
dcterms.bibliographicCitation | 19. Suescún, D.; León, J.D.; Villegas, J.C.; Correa-Londoño, G.A. Nutrient Loss to Erosion Responds to Rain Characteristics under Transformed Landscapes in the Río Grande Basin, Colombian Andes. Ecohydrology 2023, 16, e2519. https://doi.org/10.1002/eco.2519 | spa |
dcterms.bibliographicCitation | 20. LaRota-Aguilera, M.J.; Marull, J. Towards a Landscape-Metabolism Model for the Tropical Andes. Appl. Metrop. Reg. Cali (Colomb). Environ. Sci. Policy 2023, 140, 208–220. https://doi.org/10.1016/j.envsci.2022.12.005 | spa |
dcterms.bibliographicCitation | 21. Ariza-Buitrago, I.; Gómez-Betancur, L. Nature in Focus: The Invisibility and Re-Emergence of Rivers, Land and Animals in Colombia’s Transitional Justice System. Int. J. Transitional Justice 2023, 17, 71–88. https://doi.org/10.1093/ijtj/ijad001 | spa |
dcterms.bibliographicCitation | 22. Orozco, M.C.; Ceron, L.E.; Martínez-Idrobo, J.P.; Ospina, R. Análisis de los patrones espaciales del paisaje en un corredor biológico del macizo colombiano cauca. Biotecnol. En. El Sect. Agropecu. Y Agroindustrial 2015, 13, 54–63 | spa |
dcterms.bibliographicCitation | 23. Ruiz, D.M.; Martinez, J.P.; Figueroa, A. Agricultura sostenible en ecosistemas de alta montaña. Biotecnol. En. El Sect. Agropecu. Y Agroindustrial 2015, 13, 129–138 | spa |
dcterms.bibliographicCitation | 24. Mejía, L.; Barrios, M. Identifying Watershed Predictors of Surface Water Quality through Iterative Input Selection. Int. J. Environ. Sci. Technol. 2023, 20, 7201–7216. https://doi.org/10.1007/s13762-022-04406-2 | spa |
dcterms.bibliographicCitation | 25. Marín-Pimentel, G.-E.; Rueda-Saa, G.; Menjivar-Flores, J.C. Evaluation of Physicochemical Properties in Agricultural Soils on the Flat and Piedmont Areas of Valle Del Cauca, Colombia with Emphasis on Degradation. Environ. Earth Sci. 2023, 82, 157. https://doi.org/10.1007/s12665-023-10813-6 | spa |
dcterms.bibliographicCitation | 26. Núñez, A.P.B.; Gutiérrez-Montes, I.; Hernández-Núñez, H.E.; Suárez, D.R.G.; García, G.A.G.; Suárez, J.C.; Casanoves, F.; Flora, C.; Sibelet, N. Diverse Farmer Livelihoods Increase Resilience to Climate Variability in Southern Colombia. Land. Use Policy 2023, 131, 106731. https://doi.org/10.1016/j.landusepol.2023.106731 | spa |
dcterms.bibliographicCitation | 27. Azhoni, A.; Jude, S.; Holman, I. Adapting to Climate Change by Water Management Organisations: Enablers and Barriers. J. Hydrol. 2018, 559, 736–748. https://doi.org/10.1016/j.jhydrol.2018.02.047. | spa |
dcterms.bibliographicCitation | 28. Almansa-Manrique, É.F.; Velásquez-Penagos, J.G.; Rodríguez-Yzquierdo, G.A. Effect of the Use of Production Water of Pe-troleum Industry in Agricultural and Livestock Activities. Corpoica Cienc. Y Tecnol. Agropecu. 2018, 19, 403–420. https://doi.org/10.21930/rcta.vol19_num2_art:1016 | spa |
dcterms.bibliographicCitation | 29. Hairani, A.; Noor, M. Water Management on Peatland for Food Crop and Horticulture Production: Research Review in Ka-limantan. IOP Conf. Ser. Earth Environ. Sci. 2020, 499, 012006. https://doi.org/10.1088/1755-1315/499/1/012006 | spa |
dcterms.bibliographicCitation | 30. Lin Lawell, C.-Y.C.; Paudel, K.P.; Pandit, M. One Shape Does Not Fit All: A Nonparametric Instrumental Variable Approach to Estimating the Income-Pollution Relationship at the Global Level. Water Resour. Econ. 2018, 21, 3–16. https://doi.org/10.1016/j.wre.2018.01.001 | spa |
dcterms.bibliographicCitation | 31. Berrios, F.; Campbell, D.E.; Ortiz, M. Emergy-Based Indicators for Evaluating Ecosystem Health: A Case Study of Three Benthic Ecosystem Networks Influenced by Coastal Upwelling in Northern Chile (SE Pacific Coast). Ecol. Indic. 2018, 95, 379–393. https://doi.org/10.1016/j.ecolind.2018.07.055 | spa |
dcterms.bibliographicCitation | 32. Meza-Salazar, A.M.; Guevara, G.; Gomes-Dias, L.; Cultid-Medina, C.A. Density and Diversity of Macroinvertebrates in Co-lombian Andean Streams Impacted by Mining, Agriculture and Cattle Production. PeerJ 2020, 8, e9619. https://doi.org/10.7717/peerj.9619 | spa |
dcterms.bibliographicCitation | 33. Mohamamad, A.; Jalal, K.C.A. Macrobenthic Diversity and Community Composition in the Pahang Estuary, Malaysia. J. Coast. Res. 2018, 82, 206–211. https://doi.org/10.2112/SI82-030.1 | spa |
dcterms.bibliographicCitation | 34. Mendieta-Mendoza, A.; Rentería-Villalobos, M.; Chávez-Flores, D.; Santellano-Estrada, E.; Pinedo-Álvarez, C.; Ramos-Sánchez, V.H. Reconnesaince of Chemically Vulnerable Areas of an Aquifer under Arid Conditions with Agricultural Uses. Agric. Water Manag. 2020, 233, 106100. https://doi.org/10.1016/j.agwat.2020.106100 | spa |
dcterms.bibliographicCitation | 35. Torti, M.J.; Portela, S.I.; Andriulo, A.E. Phosphorus and Nitrogen Fractions during Base Flow Conditions of a Pampean Stream and Their Relationship with Land Use. Ecol. Austral 2020, 30, 331–343. https://doi.org/10.25260/EA.20.30.3.0.1073 | spa |
dcterms.bibliographicCitation | 36. Peluso, J.; Aronzon, C.M.; Ríos de Molina, M.C.; Rojas, D.E.; Cristos, D.; Pérez Coll, C.S. Integrated Analysis of the Quality of Water Bodies from the Lower Paraná River Basin with Different Productive Uses by Physicochemical and Biological Indicators. Environ. Pollut. 2020, 263, 114434. https://doi.org/10.1016/j.envpol.2020.114434 | spa |
dcterms.bibliographicCitation | 37. Aguirre, M.A.; Rojas, A.G.; Bermudez, O.B.; Trochez, F.V.B. Effects of human extractive activities and recreational services on water quality/efectos de actividades humanas extractivas y servicios recreativos sobre la calidad del agua. Rev. De. Gest. Soc. E Ambient. 2020, 14, 82–105 | spa |
dcterms.bibliographicCitation | 38. Esse, C.; Santander-Massa, R.; Encina-Montoya, F.; De los Ríos, P.; Fonseca, D.; Saavedra, P. Multicriteria Spatial Analysis Applied to Identifying Ecosystem Services in Mixed-Use River Catchment Areas in South Central Chile. For. Ecosyst. 2019, 6, 25. https://doi.org/10.1186/s40663-019-0183-1 | spa |
dcterms.bibliographicCitation | 39. Matthews, R.B.; Gilbert, N.G.; Roach, A.; Polhill, J.G.; Gotts, N.M. Agent-Based Land-Use Models: A Review of Applications. Landsc. Ecol. 2007, 22, 1447–1459. https://doi.org/10.1007/s10980-007-9135-1 | spa |
dcterms.bibliographicCitation | 40. Zhang, J.; Qu, M.; Wang, C.; Zhao, J.; Cao, Y. Quantifying Landscape Pattern and Ecosystem Service Value Changes: A Case Study at the County Level in the Chinese Loess Plateau. Glob. Ecol. Conserv. 2020, 23, e01110. https://doi.org/10.1016/j.gecco.2020.e01110. | spa |
dcterms.bibliographicCitation | 41. Robinson, D.T.; Brown, D.G. Evaluating the Effects of Land-use Development Policies on Ex-urban Forest Cover: An Integrated Agent-based GIS Approach. Int. J. Geogr. Inf. Sci. 2009, 23, 1211–1232. https://doi.org/10.1080/13658810802344101 | spa |
dcterms.bibliographicCitation | 42. Musakwa, W. Identifying Land Suitable for Agricultural Land Reform Using GIS-MCDA in South Africa. Environ. Dev. Sustain. 2018, 20, 2281–2299. https://doi.org/10.1007/s10668-017-9989-6 | spa |
dcterms.bibliographicCitation | 43. Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From Land Cover Change to Land Function Dynamics: A Major Challenge to Improve Land Characterization. J. Environ. Manag. 2009, 90, 1327–1335. https://doi.org/10.1016/j.jenvman.2008.08.005 | spa |
dcterms.bibliographicCitation | 44. Polaine, X.K.; Dawson, R.; Walsh, C.L.; Amezaga, J.; Peña-Varón, M.; Lee, C.; Rao, S. Systems Thinking for Water Security. Civ. Eng. Environ. Syst. 2022, 39, 205–223. https://doi.org/10.1080/10286608.2022.2108806 | spa |
dcterms.bibliographicCitation | 45. Bodin, Ö.; Crona, B.I. The Role of Social Networks in Natural Resource Governance: What Relational Patterns Make a Difference? Glob. Environ. Change 2009, 19, 366–374. https://doi.org/10.1016/j.gloenvcha.2009.05.002 | spa |
dcterms.bibliographicCitation | 46. Felipe-Lucia, M.R.; Guerrero, A.M.; Alexander, S.M.; Ashander, J.; Baggio, J.A.; Barnes, M.L.; Bodin, Ö.; Bonn, A.; Fortin, M.-J.; Friedman, R.S.; et al. Conceptualizing Ecosystem Services Using Social–Ecological Networks. Trends Ecol. Evol. 2022, 37, 211–222. https://doi.org/10.1016/j.tree.2021.11.012 | spa |
dcterms.bibliographicCitation | 47. Li, M.; Cao, X.; Liu, D.; Fu, Q.; Li, T.; Shang, R. Sustainable Management of Agricultural Water and Land Resources under Changing Climate and Socio-Economic Conditions: A Multi-Dimensional Optimization Approach. Agric. Water Manag. 2022, 259, 107235. https://doi.org/10.1016/j.agwat.2021.107235 | spa |
dcterms.bibliographicCitation | 48. Loboguerrero, A.M.; Boshell, F.; León, G.; Martinez-Baron, D.; Giraldo, D.; Recaman Mejía, L.; Díaz, E.; Cock, J. Bridging the Gap between Climate Science and Farmers in Colombia. Clim. Risk Manag. 2018, 22, 67–81. https://doi.org/10.1016/j.crm.2018.08.001 | spa |
dcterms.bibliographicCitation | 49. Bovolo, F.; Bruzzone, L.; Solano-Correa, Y.T. Multitemporal Analysis of Remotely Sensed Image Data. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 156–185, ISBN 978-0-12-803221-3 | spa |
dcterms.bibliographicCitation | 50. Hobouchian, M.P.; Salio, P.; García Skabar, Y.; Vila, D.; Garreaud, R. Assessment of Satellite Precipitation Estimates over the Slopes of the Subtropical Andes. Atmos. Res. 2017, 190, 43–54. https://doi.org/10.1016/j.atmosres.2017.02.006 | spa |
dcterms.bibliographicCitation | 51. Valencia, S.; Marín, D.E.; Gómez, D.; Hoyos, N.; Salazar, J.F.; Villegas, J.C. Spatio-Temporal Assessment of Gridded Precip-itation Products across Topographic and Climatic Gradients in Colombia. Atmos. Res. 2023, 285, 106643. https://doi.org/10.1016/j.atmosres.2023.106643 | spa |
dcterms.bibliographicCitation | 52. Lafuente, W.; Carpio, A.J.; Alcácer, C.; Moreno, J.L. Spatio-Temporal Variability of Physicochemical Conditions in the Headwaters of Neotropical Streams. J. South Am. Earth Sci. 2023, 126, 104361. https://doi.org/10.1016/j.jsames.2023.104361 | spa |
dcterms.bibliographicCitation | 53. Tangarife-Escobar, A.; Koeniger, P.; López-Moreno, J.I.; Botía, S.; Ceballos-Liévano, J.L. Spatiotemporal Variability of Stable Isotopes in Precipitation and Stream Water in a High Elevation Tropical Catchment in the Central Andes of Colombia. Hydrol. Process. 2023, 37, e14873. https://doi.org/10.1002/hyp.14873 | spa |
dcterms.bibliographicCitation | 54. Castaño Uribe, C.; Carrillo Carrillo, R. (Eds.) Sistema de Información Ambiental de Colombia -SIAC-: Primera Generación de Indicadores de la Línea Base de la Información Ambiental de Colombia; IDEAM: Bogotá, Colombia, 2002; Volume 2, ISBN 978-958-8067-08-7 | spa |
dcterms.bibliographicCitation | 55. Marull, J.; Delgadillo, O.; Cattaneo, C.; La Rota, M.J.; Krausmann, F. Socioecological Transition in the Cauca River Valley, Colombia (1943–2010): Towards an Energy–Landscape Integrated Analysis. Reg. Environ. Change 2018, 18, 1073–1087. https://doi.org/10.1007/s10113-017-1128-2 | spa |
dcterms.bibliographicCitation | 56. Lumia, G.; Praticò, S.; Di Fazio, S.; Cushman, S.; Modica, G. Combined Use of Urban Atlas and Corine Land Cover Datasets for the Implementation of an Ecological Network Using Graph Theory within a Multi-Species Approach. Ecol. Indic. 2023, 148, 110150. https://doi.org/10.1016/j.ecolind.2023.110150 | spa |
dcterms.bibliographicCitation | 57. Fagua, J.C.; Rodríguez-Buriticá, S.; Jantz, P. Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend. Remote Sens. 2023, 15, 2522. https://doi.org/10.3390/rs15102522. | spa |
dcterms.bibliographicCitation | 58. Pencue-Fierro, E.L.; Solano-Correa, Y.T.; Corrales-Muñoz, J.C.; Figueroa-Casas, A. A Semi-Supervised Hybrid Approach for Multitemporal Multi-Region Multisensor Landsat Data Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5424–5435. https://doi.org/10.1109/JSTARS.2016.2623567 | spa |
dcterms.bibliographicCitation | 59. Arrechea-Castillo, D.A.; Solano-Correa, Y.T.; Muñoz-Ordóñez, J.F.; Pencue-Fierro, E.L.; Figueroa-Casas, A. Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning. Remote Sens. 2023, 15, 2521. https://doi.org/10.3390/rs15102521 | spa |
dcterms.bibliographicCitation | 60. Sarmiento López, A.H.; Etter Rothlisberger, A.A.; González Arenas, J.J.; Orrego Suaza, S.A. Análisis de Tendencias y Patrones Espaciales de Deforestación en Colombia; Nstituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM: Bogotá, Colombia, 2011; ISBN 978-958-8067-48-3 | spa |
dcterms.bibliographicCitation | 61. Unescosost, T. AQUARISC—Vulnerabilidad y Riesgo En Sistemas de Agua Potable En El Cauca. Available online: https://www.unescosost.org/post/vulnerabilidad-y-riesgo-en-sistemas-de-agua-potable-en-el-cauca-aquarisc (accessed on 11 October 2023 | spa |
dcterms.bibliographicCitation | 62. AQUARISC, Proyecto de la Gobernación del Cauca Busca Generar Uso Adecuado y Conservación Del Agua. Available online: https://anterior.cauca.gov.co/noticias/aquarisc-proyecto-de-la-gobernacion-del-cauca-busca-generar-uso-adecuado-y-conservacion-del (accessed on 11 October 2023 | spa |
dcterms.bibliographicCitation | 63. Blanco, M.; Montes, F.; Borrero-Echeverry, F.; Solano-Blanco, A.L.; Gomez, C.; Zuluaga, P.; Rivera-Trujillo, H.F.; Rincon, D.F. A Participative System Methodology to Model Pest Dynamics in an Agricultural Setting. Kybernetes 2022, 52, 3550–3565. https://doi.org/10.1108/K-08-2021-0663 | spa |
dcterms.bibliographicCitation | 64. Chignard, S.; Glatron, M. Data Collaborations at a Local Scale: Lessons Learnt in Rennes (2010–2021). Data Policy 2023, 5, e20. https://doi.org/10.1017/dap.2023.16 | spa |
dcterms.bibliographicCitation | 65. Kumar, A.; Palmate, S.S.; Shukla, R. Water Quality Modelling, Monitoring, and Mitigation. Appl. Sci. 2022, 12, 11403. https://doi.org/10.3390/app122211403 | spa |
dcterms.bibliographicCitation | 66. Nagaraju, T.V.; B.m., S.; Chaudhary, B.; Prasad, C.D.; Gobinath, R. Prediction of Ammonia Contaminants in the Aquaculture Ponds Using Soft Computing Coupled with Wavelet Analysis. Environ. Pollut. 2023, 331, 121924. https://doi.org/10.1016/j.envpol.2023.121924 | spa |
dcterms.bibliographicCitation | 67. Nagaraju, T.V.; Malegole, S.B.; Chaudhary, B.; Ravindran, G. Assessment of Environmental Impact of Aquaculture Ponds in the Western Delta Region of Andhra Pradesh. Sustainability 2022, 14, 13035. https://doi.org/10.3390/su142013035 | spa |
dcterms.bibliographicCitation | 68. Fernández, N.; Ramírez, A.; Solano, F. Physico-chemical water quality indices—A comparative review. Bistua Rev. De La Fac. De Cienc. Basicas 2004, 2, 19–30. https://doi.org/10.24054/01204211.v1.n1.2004.9 | spa |
dcterms.bibliographicCitation | 69. Roldán-Pérez, G. Bioindicación de la Calidad del Agua en Colombia: Propuesta Para el Uso del Método BMWP Col; Editorial Universidad de Antioquia: Medellín, Colombia, 2003 | spa |
dcterms.bibliographicCitation | 70. Lobato-Vargas, R. Escorrentía de Una Cuenca Mediante la Aplicación de un Simulador de Lluvia. Caso: Río Chanta, La Encaña-da—Cajamarca, 2015; National University of Cajamarca: Cajamarca, Peru, 2015 | spa |
dcterms.bibliographicCitation | 71. Cobo-Quintero, L.; Amézquita-Collazos, E. Diseño, construccion y evaluación de un minisimulador de lluvia para estudios de susceptibilidad a erosión en laderas. Rev. Suelos Ecuat. 1999, 29, 66–70 | spa |
dcterms.bibliographicCitation | 72. Otero, J.D.; Figueroa, A.; Muñoz, F.A.; Peña, M.R. Loss of Soil and Nutrients by Surface Runoff in Two Agro-Ecosystems within an Andean Paramo Area. Ecol. Eng. 2011, 37, 2035–2043. https://doi.org/10.1016/j.ecoleng.2011.08.001 | spa |
dcterms.bibliographicCitation | 73. Ruiz, D.M.; Idrobo, J.P.M.; Sarmiento, J.D.O.; Casas, A.F. Effects of productive activities on the water quality for human consumption in an andean basin, a case study. Rev. Int. De. Contam. Ambient. 2017, 33, 361–375. https://doi.org/10.20937/RICA.2017.33.03.01 | spa |
dcterms.bibliographicCitation | 74. Greenberg, A.E.; Clesceri, L.S.; Trussell, R.R. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Water Works Association (AWWA, WEF and APHA): Washington, DC, USA, 2017 | spa |
dcterms.bibliographicCitation | 75. Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441 | spa |
dcterms.bibliographicCitation | 76. Spiegel, M.R.; Schiller, J. Theory And Problems Of Probability And Statistics (Schaum S Outline Series), 1st ed.; McGraw-Hill Ed-ucation (India) Pvt Limited, 2003; ISBN 978-0-07-058610-9 | spa |
dcterms.bibliographicCitation | 77. Bastidas, J.C.; Vélez, J.J.; Zambrano, J.; Londoño, A. Design of Water Quality Monitoring Networks with Two Information Scenarios in Tropical Andean Basins. Environ. Sci. Pollut. Res. 2017, 24, 20134–20148. https://doi.org/10.1007/s11356-017-9021-6 | spa |
dcterms.bibliographicCitation | 78. World Health Organization. Guidelines for Drinking-Water Quality [Electronic Resource]: Incorporating 1st and 2nd Addenda,Vol.1, Recommendations, 3rd ed.; World Health Organization: Geneva, Switzerland, 2008; ISBN 978-92-4-154761-1 | spa |
dcterms.bibliographicCitation | 79. Parlamento Europeo Directiva 2000/60/CE Del Parlamento Europeo y Del Consejo, de 23 de Octubre de 2000, Por La Que Se Establece Un Marco Comunitario de Actuación En El Ámbito de La Política de Aguas. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2000-82524 (accessed on 21 October 2021). | spa |
dcterms.bibliographicCitation | 80. Howland, F.; Le Coq, J.-F. Adaptation to climate change in Colombia: Concepts and policies; CIAT: Cali, Colombia, 2018; p. 100 | spa |
dcterms.bibliographicCitation | 81. Harden, C.P.; Hartsig, J.; Farley, K.A.; Lee, J.; Bremer, L.L. Effects of Land-Use Change on Water in Andean Páramo Grassland Soils. Ann. Assoc. Am. Geogr. 2013, 103, 375–384. https://doi.org/10.1080/00045608.2013.754655 | spa |
dcterms.bibliographicCitation | 82. Mulligan, M.; Rubiano, J.; Hyman, G.; White, D.; Garcia, J.; Saravia, M.; Gabriel Leon, J.; Selvaraj, J.J.; Guttierez, T.; Leonardo Saenz-Cruz, L. The Andes Basins: Biophysical and Developmental Diversity in a Climate of Change. Water Int. 2010, 35, 472–492. https://doi.org/10.1080/02508060.2010.516330 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/su152215965 | |
dc.subject.keywords | Water pollution | spa |
dc.subject.keywords | Agriculture | spa |
dc.subject.keywords | Drinking water | spa |
dc.subject.keywords | land use/land cover | spa |
dc.subject.keywords | Monitoring | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Investigadores | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.