Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz-Ordóñez, Diana Marcela
dc.contributor.authorSolano-Correa, Yady Tatiana
dc.contributor.authorMaysels, Rachael
dc.contributor.authorCasas-Figueroa, Apolinar
dc.date.accessioned2023-11-20T12:48:25Z
dc.date.available2023-11-20T12:48:25Z
dc.date.issued2023-11-15
dc.date.submitted2023-11-17
dc.identifier.citationRuiz-Ordóñez, D.M.; Solano-Correa, Y.T.; Maysels, R.; Figueroa-Casas, A. Land-Use Dynamics and Water Quality in Andean Basins. Sustainability 2023, 15, 15965. https://doi.org/10.3390/su152215965spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12567
dc.description.abstractConventional agricultural practices, such as the use of agrochemicals, implementation of monocultures, and the expansion of crops in strategic ecosystems, have significant impacts in Andean basins, directly increasing nutrient inputs to waterways, and contributing to ecological fragility and socioeconomic vulnerability. This complex dynamic is related to land-use change and production activities that affect the provision of hydrological ecosystem services. This study presents an integrated analysis of socioecological interactions related to water quality in the Las Piedras River basin (LPRB), a water supply basin located in the Andean region of southwestern Colombia. The analysis was conducted over a five-year monitoring period to assess the spatiotemporal variation and correlation of water quality between streams and agricultural runoff water within the LPRB. Furthermore, water quality indices were calculated based on physicochemical and biological parameters to evaluate the impact of land-use/land-cover changes and agricultural activities within the basin. Results demonstrate that different types of actors, productive logics, mechanisms of use, and access to water within the basin affect water quality and uncertainty for water management, while facing socioecological conflicts between actors.spa
dc.format.extent24 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceSustainabilityspa
dc.titleLand-Use Dynamics and Water Quality in Andean Basinsspa
dcterms.bibliographicCitation1. Glavan, M.; Ceglar, A.; Pintar, M. Assessing the Impacts of Climate Change on Water Quantity and Quality Modelling in Small Slovenian Mediterranean Catchment—Lesson for Policy and Decision Makers. Hydrol. Process. 2015, 29, 3124–3144. https://doi.org/10.1002/hyp.10429spa
dcterms.bibliographicCitation2. Nowak-Olejnik, A.; Schirpke, U.; Tappeiner, U. A Systematic Review on Subjective Well-Being Benefits Associated with Cultural Ecosystem Services. Ecosyst. Serv. 2022, 57, 101467. https://doi.org/10.1016/j.ecoser.2022.101467.spa
dcterms.bibliographicCitation3. Ma, S.; Li, Y.; Zhang, Y.; Wang, L.-J.; Jiang, J.; Zhang, J. Distinguishing the Relative Contributions of Climate and Land Use/Cover Changes to Ecosystem Services from a Geospatial Perspective. Ecol. Indic. 2022, 136, 108645. https://doi.org/10.1016/j.ecolind.2022.108645spa
dcterms.bibliographicCitation4. Ulrich, W.; Batáry, P.; Baudry, J.; Beaumelle, L.; Bucher, R.; Čerevková, A.; de la Riva, E.G.; Felipe-Lucia, M.R.; Gallé, R.; Kesse-Guyot, E.; et al. From Biodiversity to Health: Quantifying the Impact of Diverse Ecosystems on Human Well-Being. People Nat. 2023, 5, 69–83. https://doi.org/10.1002/pan3.10421spa
dcterms.bibliographicCitation5. Hernández Vidal, N.; Merlinsky, G.; Bolados, P. Defending the Commons: New Frontiers in Latin American Perspectives on Environmental Justice. Sociol. Inq. 2023, 93, 370–391. https://doi.org/10.1111/soin.12525spa
dcterms.bibliographicCitation6. Prasad, P.V.V.; Bhatnagar, N.; Bhandari, V.; Jacob, G.; Narayan, K.; Echeverría, R.; Beintema, N.; Farah Cox, P.; Compton, J. Patterns of Investment in Agricultural Research and Innovation for the Global South, with a Focus on Sustainable Agricultural Intensification. Front. Sustain. Food Syst. 2023, 7, 1108949spa
dcterms.bibliographicCitation7. Mikulewicz, N.J.W.C.; Michael, K.M. (Eds.) Climate Justice in the Majority World: Vulnerability, Resistance, and Diverse Knowledges; Routledge: London, UK, 2023; ISBN 978-1-00-321402-1spa
dcterms.bibliographicCitation8. Pahl-Wostl, C. An Evolutionary Perspective on Water Governance: From Understanding to Transformation. Water Resour. Manag. 2017, 31, 2917–2932. https://doi.org/10.1007/s11269-017-1727-1spa
dcterms.bibliographicCitation9. Pablo-Romero, M.P.; Sánchez-Braza, A.; Gil-Pérez, J. Is Deforestation Needed for Growth? Testing the EKC Hypothesis for Latin America. For. Policy Econ. 2023, 148, 102915. https://doi.org/10.1016/j.forpol.2023.102915spa
dcterms.bibliographicCitation10. Ministerio del Medio Ambiente. V Informe Nacional de Biodiversidad de Colombia ante el Convenio de Biodiversidad Biológica; Mi-nisterio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2014; p. 80spa
dcterms.bibliographicCitation11. Winton, R.S.; López-Casas, S.; Valencia-Rodríguez, D.; Bernal-Forero, C.; Delgado, J.; Wehrli, B.; Jiménez-Segura, L. Patterns and Drivers of Water Quality Changes Associated with Dams in the Tropical Andes. Hydrol. Earth Syst. Sci. 2023, 27, 1493–1505. https://doi.org/10.5194/hess-27-1493-2023spa
dcterms.bibliographicCitation12. Arias Montevechio, E.; Crispin Cunya, M.; Fernández Jorquera, F.; Rendon, E.; Vásquez-Lavin, F.; Stehr, A.; Ponce Oliva, R.D. Traditional Crops and Climate Change Adaptation: Insights from the Andean Agricultural Sector. Clim. Dev. 2023, 15, 723–737. https://doi.org/10.1080/17565529.2022.2151307spa
dcterms.bibliographicCitation13. Himanshu, S.K.; Ale, S.; Bordovsky, J.P.; Kim, J.; Samanta, S.; Omani, N.; Barnes, E.M. Assessing the Impacts of Irrigation Termination Periods on Cotton Productivity under Strategic Deficit Irrigation Regimes. Sci. Rep. 2021, 11, 20102. https://doi.org/10.1038/s41598-021-99472-wspa
dcterms.bibliographicCitation14. Munoz, H.M.; Martens, L.; Löhr, K.; Bonatti, M.; Chara, J.; Perez, L.; Sieber, S.; Castro-Nunez, A. Integrating Climate Mitigation and Environmental Peacebuilding Objectives through Sustainable Land Use Systems: Theory of Change and Indicators. PLOS Clim. 2023, 2, e0000075. https://doi.org/10.1371/journal.pclm.0000075spa
dcterms.bibliographicCitation15. Barrios Latorre, S.A.; Sadovska, V.; Chongtham, I.R. Perspectives on Agroecological Transition: The Case of Guachetá Mu-nicipality, Colombia. Agroecol. Sustain. Food Syst. 2023, 47, 382–412. https://doi.org/10.1080/21683565.2022.2163449spa
dcterms.bibliographicCitation16. Ruiz, D.; Martínez, J.P.; Figueroa, A. Importancia del “efecto rebote” o paradoja de Jevons en el diseño de la política ambiental. Rev. Ing. Univ. De Medellín 2015, 14, 49–59. https://doi.org/10.22395/rium.v14n27a3spa
dcterms.bibliographicCitation17. Munar, A.M.; Mendez, N.; Narvaez, G.; Campo Zambrano, F.; Motta-Marques, D.; Lyra Fialho Brêda, J.P.; Santos Fleischmann, A.; Angarita, H. Modelling the Climate Change Impacts on River Discharge and Inundation Extent in the Magdalena River Basin—Colombia. Hydrol. Sci. J. 2023, 68, 1286–1300. https://doi.org/10.1080/02626667.2023.2215932spa
dcterms.bibliographicCitation18. Gobierno de Colombia. Colombia—Monitoreo de territorios afectados por cultivos ilícitos 2021; Oficina de las Naciones Unidas contra la Droga y el Delito: Colombia, 2022; p. 173spa
dcterms.bibliographicCitation19. Suescún, D.; León, J.D.; Villegas, J.C.; Correa-Londoño, G.A. Nutrient Loss to Erosion Responds to Rain Characteristics under Transformed Landscapes in the Río Grande Basin, Colombian Andes. Ecohydrology 2023, 16, e2519. https://doi.org/10.1002/eco.2519spa
dcterms.bibliographicCitation20. LaRota-Aguilera, M.J.; Marull, J. Towards a Landscape-Metabolism Model for the Tropical Andes. Appl. Metrop. Reg. Cali (Colomb). Environ. Sci. Policy 2023, 140, 208–220. https://doi.org/10.1016/j.envsci.2022.12.005spa
dcterms.bibliographicCitation21. Ariza-Buitrago, I.; Gómez-Betancur, L. Nature in Focus: The Invisibility and Re-Emergence of Rivers, Land and Animals in Colombia’s Transitional Justice System. Int. J. Transitional Justice 2023, 17, 71–88. https://doi.org/10.1093/ijtj/ijad001spa
dcterms.bibliographicCitation22. Orozco, M.C.; Ceron, L.E.; Martínez-Idrobo, J.P.; Ospina, R. Análisis de los patrones espaciales del paisaje en un corredor biológico del macizo colombiano cauca. Biotecnol. En. El Sect. Agropecu. Y Agroindustrial 2015, 13, 54–63spa
dcterms.bibliographicCitation23. Ruiz, D.M.; Martinez, J.P.; Figueroa, A. Agricultura sostenible en ecosistemas de alta montaña. Biotecnol. En. El Sect. Agropecu. Y Agroindustrial 2015, 13, 129–138spa
dcterms.bibliographicCitation24. Mejía, L.; Barrios, M. Identifying Watershed Predictors of Surface Water Quality through Iterative Input Selection. Int. J. Environ. Sci. Technol. 2023, 20, 7201–7216. https://doi.org/10.1007/s13762-022-04406-2spa
dcterms.bibliographicCitation25. Marín-Pimentel, G.-E.; Rueda-Saa, G.; Menjivar-Flores, J.C. Evaluation of Physicochemical Properties in Agricultural Soils on the Flat and Piedmont Areas of Valle Del Cauca, Colombia with Emphasis on Degradation. Environ. Earth Sci. 2023, 82, 157. https://doi.org/10.1007/s12665-023-10813-6spa
dcterms.bibliographicCitation26. Núñez, A.P.B.; Gutiérrez-Montes, I.; Hernández-Núñez, H.E.; Suárez, D.R.G.; García, G.A.G.; Suárez, J.C.; Casanoves, F.; Flora, C.; Sibelet, N. Diverse Farmer Livelihoods Increase Resilience to Climate Variability in Southern Colombia. Land. Use Policy 2023, 131, 106731. https://doi.org/10.1016/j.landusepol.2023.106731spa
dcterms.bibliographicCitation27. Azhoni, A.; Jude, S.; Holman, I. Adapting to Climate Change by Water Management Organisations: Enablers and Barriers. J. Hydrol. 2018, 559, 736–748. https://doi.org/10.1016/j.jhydrol.2018.02.047.spa
dcterms.bibliographicCitation28. Almansa-Manrique, É.F.; Velásquez-Penagos, J.G.; Rodríguez-Yzquierdo, G.A. Effect of the Use of Production Water of Pe-troleum Industry in Agricultural and Livestock Activities. Corpoica Cienc. Y Tecnol. Agropecu. 2018, 19, 403–420. https://doi.org/10.21930/rcta.vol19_num2_art:1016spa
dcterms.bibliographicCitation29. Hairani, A.; Noor, M. Water Management on Peatland for Food Crop and Horticulture Production: Research Review in Ka-limantan. IOP Conf. Ser. Earth Environ. Sci. 2020, 499, 012006. https://doi.org/10.1088/1755-1315/499/1/012006spa
dcterms.bibliographicCitation30. Lin Lawell, C.-Y.C.; Paudel, K.P.; Pandit, M. One Shape Does Not Fit All: A Nonparametric Instrumental Variable Approach to Estimating the Income-Pollution Relationship at the Global Level. Water Resour. Econ. 2018, 21, 3–16. https://doi.org/10.1016/j.wre.2018.01.001spa
dcterms.bibliographicCitation31. Berrios, F.; Campbell, D.E.; Ortiz, M. Emergy-Based Indicators for Evaluating Ecosystem Health: A Case Study of Three Benthic Ecosystem Networks Influenced by Coastal Upwelling in Northern Chile (SE Pacific Coast). Ecol. Indic. 2018, 95, 379–393. https://doi.org/10.1016/j.ecolind.2018.07.055spa
dcterms.bibliographicCitation32. Meza-Salazar, A.M.; Guevara, G.; Gomes-Dias, L.; Cultid-Medina, C.A. Density and Diversity of Macroinvertebrates in Co-lombian Andean Streams Impacted by Mining, Agriculture and Cattle Production. PeerJ 2020, 8, e9619. https://doi.org/10.7717/peerj.9619spa
dcterms.bibliographicCitation33. Mohamamad, A.; Jalal, K.C.A. Macrobenthic Diversity and Community Composition in the Pahang Estuary, Malaysia. J. Coast. Res. 2018, 82, 206–211. https://doi.org/10.2112/SI82-030.1spa
dcterms.bibliographicCitation34. Mendieta-Mendoza, A.; Rentería-Villalobos, M.; Chávez-Flores, D.; Santellano-Estrada, E.; Pinedo-Álvarez, C.; Ramos-Sánchez, V.H. Reconnesaince of Chemically Vulnerable Areas of an Aquifer under Arid Conditions with Agricultural Uses. Agric. Water Manag. 2020, 233, 106100. https://doi.org/10.1016/j.agwat.2020.106100spa
dcterms.bibliographicCitation35. Torti, M.J.; Portela, S.I.; Andriulo, A.E. Phosphorus and Nitrogen Fractions during Base Flow Conditions of a Pampean Stream and Their Relationship with Land Use. Ecol. Austral 2020, 30, 331–343. https://doi.org/10.25260/EA.20.30.3.0.1073spa
dcterms.bibliographicCitation36. Peluso, J.; Aronzon, C.M.; Ríos de Molina, M.C.; Rojas, D.E.; Cristos, D.; Pérez Coll, C.S. Integrated Analysis of the Quality of Water Bodies from the Lower Paraná River Basin with Different Productive Uses by Physicochemical and Biological Indicators. Environ. Pollut. 2020, 263, 114434. https://doi.org/10.1016/j.envpol.2020.114434spa
dcterms.bibliographicCitation37. Aguirre, M.A.; Rojas, A.G.; Bermudez, O.B.; Trochez, F.V.B. Effects of human extractive activities and recreational services on water quality/efectos de actividades humanas extractivas y servicios recreativos sobre la calidad del agua. Rev. De. Gest. Soc. E Ambient. 2020, 14, 82–105spa
dcterms.bibliographicCitation38. Esse, C.; Santander-Massa, R.; Encina-Montoya, F.; De los Ríos, P.; Fonseca, D.; Saavedra, P. Multicriteria Spatial Analysis Applied to Identifying Ecosystem Services in Mixed-Use River Catchment Areas in South Central Chile. For. Ecosyst. 2019, 6, 25. https://doi.org/10.1186/s40663-019-0183-1spa
dcterms.bibliographicCitation39. Matthews, R.B.; Gilbert, N.G.; Roach, A.; Polhill, J.G.; Gotts, N.M. Agent-Based Land-Use Models: A Review of Applications. Landsc. Ecol. 2007, 22, 1447–1459. https://doi.org/10.1007/s10980-007-9135-1spa
dcterms.bibliographicCitation40. Zhang, J.; Qu, M.; Wang, C.; Zhao, J.; Cao, Y. Quantifying Landscape Pattern and Ecosystem Service Value Changes: A Case Study at the County Level in the Chinese Loess Plateau. Glob. Ecol. Conserv. 2020, 23, e01110. https://doi.org/10.1016/j.gecco.2020.e01110.spa
dcterms.bibliographicCitation41. Robinson, D.T.; Brown, D.G. Evaluating the Effects of Land-use Development Policies on Ex-urban Forest Cover: An Integrated Agent-based GIS Approach. Int. J. Geogr. Inf. Sci. 2009, 23, 1211–1232. https://doi.org/10.1080/13658810802344101spa
dcterms.bibliographicCitation42. Musakwa, W. Identifying Land Suitable for Agricultural Land Reform Using GIS-MCDA in South Africa. Environ. Dev. Sustain. 2018, 20, 2281–2299. https://doi.org/10.1007/s10668-017-9989-6spa
dcterms.bibliographicCitation43. Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From Land Cover Change to Land Function Dynamics: A Major Challenge to Improve Land Characterization. J. Environ. Manag. 2009, 90, 1327–1335. https://doi.org/10.1016/j.jenvman.2008.08.005spa
dcterms.bibliographicCitation44. Polaine, X.K.; Dawson, R.; Walsh, C.L.; Amezaga, J.; Peña-Varón, M.; Lee, C.; Rao, S. Systems Thinking for Water Security. Civ. Eng. Environ. Syst. 2022, 39, 205–223. https://doi.org/10.1080/10286608.2022.2108806spa
dcterms.bibliographicCitation45. Bodin, Ö.; Crona, B.I. The Role of Social Networks in Natural Resource Governance: What Relational Patterns Make a Difference? Glob. Environ. Change 2009, 19, 366–374. https://doi.org/10.1016/j.gloenvcha.2009.05.002spa
dcterms.bibliographicCitation46. Felipe-Lucia, M.R.; Guerrero, A.M.; Alexander, S.M.; Ashander, J.; Baggio, J.A.; Barnes, M.L.; Bodin, Ö.; Bonn, A.; Fortin, M.-J.; Friedman, R.S.; et al. Conceptualizing Ecosystem Services Using Social–Ecological Networks. Trends Ecol. Evol. 2022, 37, 211–222. https://doi.org/10.1016/j.tree.2021.11.012spa
dcterms.bibliographicCitation47. Li, M.; Cao, X.; Liu, D.; Fu, Q.; Li, T.; Shang, R. Sustainable Management of Agricultural Water and Land Resources under Changing Climate and Socio-Economic Conditions: A Multi-Dimensional Optimization Approach. Agric. Water Manag. 2022, 259, 107235. https://doi.org/10.1016/j.agwat.2021.107235spa
dcterms.bibliographicCitation48. Loboguerrero, A.M.; Boshell, F.; León, G.; Martinez-Baron, D.; Giraldo, D.; Recaman Mejía, L.; Díaz, E.; Cock, J. Bridging the Gap between Climate Science and Farmers in Colombia. Clim. Risk Manag. 2018, 22, 67–81. https://doi.org/10.1016/j.crm.2018.08.001spa
dcterms.bibliographicCitation49. Bovolo, F.; Bruzzone, L.; Solano-Correa, Y.T. Multitemporal Analysis of Remotely Sensed Image Data. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 156–185, ISBN 978-0-12-803221-3spa
dcterms.bibliographicCitation50. Hobouchian, M.P.; Salio, P.; García Skabar, Y.; Vila, D.; Garreaud, R. Assessment of Satellite Precipitation Estimates over the Slopes of the Subtropical Andes. Atmos. Res. 2017, 190, 43–54. https://doi.org/10.1016/j.atmosres.2017.02.006spa
dcterms.bibliographicCitation51. Valencia, S.; Marín, D.E.; Gómez, D.; Hoyos, N.; Salazar, J.F.; Villegas, J.C. Spatio-Temporal Assessment of Gridded Precip-itation Products across Topographic and Climatic Gradients in Colombia. Atmos. Res. 2023, 285, 106643. https://doi.org/10.1016/j.atmosres.2023.106643spa
dcterms.bibliographicCitation52. Lafuente, W.; Carpio, A.J.; Alcácer, C.; Moreno, J.L. Spatio-Temporal Variability of Physicochemical Conditions in the Headwaters of Neotropical Streams. J. South Am. Earth Sci. 2023, 126, 104361. https://doi.org/10.1016/j.jsames.2023.104361spa
dcterms.bibliographicCitation53. Tangarife-Escobar, A.; Koeniger, P.; López-Moreno, J.I.; Botía, S.; Ceballos-Liévano, J.L. Spatiotemporal Variability of Stable Isotopes in Precipitation and Stream Water in a High Elevation Tropical Catchment in the Central Andes of Colombia. Hydrol. Process. 2023, 37, e14873. https://doi.org/10.1002/hyp.14873spa
dcterms.bibliographicCitation54. Castaño Uribe, C.; Carrillo Carrillo, R. (Eds.) Sistema de Información Ambiental de Colombia -SIAC-: Primera Generación de Indicadores de la Línea Base de la Información Ambiental de Colombia; IDEAM: Bogotá, Colombia, 2002; Volume 2, ISBN 978-958-8067-08-7spa
dcterms.bibliographicCitation55. Marull, J.; Delgadillo, O.; Cattaneo, C.; La Rota, M.J.; Krausmann, F. Socioecological Transition in the Cauca River Valley, Colombia (1943–2010): Towards an Energy–Landscape Integrated Analysis. Reg. Environ. Change 2018, 18, 1073–1087. https://doi.org/10.1007/s10113-017-1128-2spa
dcterms.bibliographicCitation56. Lumia, G.; Praticò, S.; Di Fazio, S.; Cushman, S.; Modica, G. Combined Use of Urban Atlas and Corine Land Cover Datasets for the Implementation of an Ecological Network Using Graph Theory within a Multi-Species Approach. Ecol. Indic. 2023, 148, 110150. https://doi.org/10.1016/j.ecolind.2023.110150spa
dcterms.bibliographicCitation57. Fagua, J.C.; Rodríguez-Buriticá, S.; Jantz, P. Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend. Remote Sens. 2023, 15, 2522. https://doi.org/10.3390/rs15102522.spa
dcterms.bibliographicCitation58. Pencue-Fierro, E.L.; Solano-Correa, Y.T.; Corrales-Muñoz, J.C.; Figueroa-Casas, A. A Semi-Supervised Hybrid Approach for Multitemporal Multi-Region Multisensor Landsat Data Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5424–5435. https://doi.org/10.1109/JSTARS.2016.2623567spa
dcterms.bibliographicCitation59. Arrechea-Castillo, D.A.; Solano-Correa, Y.T.; Muñoz-Ordóñez, J.F.; Pencue-Fierro, E.L.; Figueroa-Casas, A. Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning. Remote Sens. 2023, 15, 2521. https://doi.org/10.3390/rs15102521spa
dcterms.bibliographicCitation60. Sarmiento López, A.H.; Etter Rothlisberger, A.A.; González Arenas, J.J.; Orrego Suaza, S.A. Análisis de Tendencias y Patrones Espaciales de Deforestación en Colombia; Nstituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM: Bogotá, Colombia, 2011; ISBN 978-958-8067-48-3spa
dcterms.bibliographicCitation61. Unescosost, T. AQUARISC—Vulnerabilidad y Riesgo En Sistemas de Agua Potable En El Cauca. Available online: https://www.unescosost.org/post/vulnerabilidad-y-riesgo-en-sistemas-de-agua-potable-en-el-cauca-aquarisc (accessed on 11 October 2023spa
dcterms.bibliographicCitation62. AQUARISC, Proyecto de la Gobernación del Cauca Busca Generar Uso Adecuado y Conservación Del Agua. Available online: https://anterior.cauca.gov.co/noticias/aquarisc-proyecto-de-la-gobernacion-del-cauca-busca-generar-uso-adecuado-y-conservacion-del (accessed on 11 October 2023spa
dcterms.bibliographicCitation63. Blanco, M.; Montes, F.; Borrero-Echeverry, F.; Solano-Blanco, A.L.; Gomez, C.; Zuluaga, P.; Rivera-Trujillo, H.F.; Rincon, D.F. A Participative System Methodology to Model Pest Dynamics in an Agricultural Setting. Kybernetes 2022, 52, 3550–3565. https://doi.org/10.1108/K-08-2021-0663spa
dcterms.bibliographicCitation64. Chignard, S.; Glatron, M. Data Collaborations at a Local Scale: Lessons Learnt in Rennes (2010–2021). Data Policy 2023, 5, e20. https://doi.org/10.1017/dap.2023.16spa
dcterms.bibliographicCitation65. Kumar, A.; Palmate, S.S.; Shukla, R. Water Quality Modelling, Monitoring, and Mitigation. Appl. Sci. 2022, 12, 11403. https://doi.org/10.3390/app122211403spa
dcterms.bibliographicCitation66. Nagaraju, T.V.; B.m., S.; Chaudhary, B.; Prasad, C.D.; Gobinath, R. Prediction of Ammonia Contaminants in the Aquaculture Ponds Using Soft Computing Coupled with Wavelet Analysis. Environ. Pollut. 2023, 331, 121924. https://doi.org/10.1016/j.envpol.2023.121924spa
dcterms.bibliographicCitation67. Nagaraju, T.V.; Malegole, S.B.; Chaudhary, B.; Ravindran, G. Assessment of Environmental Impact of Aquaculture Ponds in the Western Delta Region of Andhra Pradesh. Sustainability 2022, 14, 13035. https://doi.org/10.3390/su142013035spa
dcterms.bibliographicCitation68. Fernández, N.; Ramírez, A.; Solano, F. Physico-chemical water quality indices—A comparative review. Bistua Rev. De La Fac. De Cienc. Basicas 2004, 2, 19–30. https://doi.org/10.24054/01204211.v1.n1.2004.9spa
dcterms.bibliographicCitation69. Roldán-Pérez, G. Bioindicación de la Calidad del Agua en Colombia: Propuesta Para el Uso del Método BMWP Col; Editorial Universidad de Antioquia: Medellín, Colombia, 2003spa
dcterms.bibliographicCitation70. Lobato-Vargas, R. Escorrentía de Una Cuenca Mediante la Aplicación de un Simulador de Lluvia. Caso: Río Chanta, La Encaña-da—Cajamarca, 2015; National University of Cajamarca: Cajamarca, Peru, 2015spa
dcterms.bibliographicCitation71. Cobo-Quintero, L.; Amézquita-Collazos, E. Diseño, construccion y evaluación de un minisimulador de lluvia para estudios de susceptibilidad a erosión en laderas. Rev. Suelos Ecuat. 1999, 29, 66–70spa
dcterms.bibliographicCitation72. Otero, J.D.; Figueroa, A.; Muñoz, F.A.; Peña, M.R. Loss of Soil and Nutrients by Surface Runoff in Two Agro-Ecosystems within an Andean Paramo Area. Ecol. Eng. 2011, 37, 2035–2043. https://doi.org/10.1016/j.ecoleng.2011.08.001spa
dcterms.bibliographicCitation73. Ruiz, D.M.; Idrobo, J.P.M.; Sarmiento, J.D.O.; Casas, A.F. Effects of productive activities on the water quality for human consumption in an andean basin, a case study. Rev. Int. De. Contam. Ambient. 2017, 33, 361–375. https://doi.org/10.20937/RICA.2017.33.03.01spa
dcterms.bibliographicCitation74. Greenberg, A.E.; Clesceri, L.S.; Trussell, R.R. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Water Works Association (AWWA, WEF and APHA): Washington, DC, USA, 2017spa
dcterms.bibliographicCitation75. Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441spa
dcterms.bibliographicCitation76. Spiegel, M.R.; Schiller, J. Theory And Problems Of Probability And Statistics (Schaum S Outline Series), 1st ed.; McGraw-Hill Ed-ucation (India) Pvt Limited, 2003; ISBN 978-0-07-058610-9spa
dcterms.bibliographicCitation77. Bastidas, J.C.; Vélez, J.J.; Zambrano, J.; Londoño, A. Design of Water Quality Monitoring Networks with Two Information Scenarios in Tropical Andean Basins. Environ. Sci. Pollut. Res. 2017, 24, 20134–20148. https://doi.org/10.1007/s11356-017-9021-6spa
dcterms.bibliographicCitation78. World Health Organization. Guidelines for Drinking-Water Quality [Electronic Resource]: Incorporating 1st and 2nd Addenda,Vol.1, Recommendations, 3rd ed.; World Health Organization: Geneva, Switzerland, 2008; ISBN 978-92-4-154761-1spa
dcterms.bibliographicCitation79. Parlamento Europeo Directiva 2000/60/CE Del Parlamento Europeo y Del Consejo, de 23 de Octubre de 2000, Por La Que Se Establece Un Marco Comunitario de Actuación En El Ámbito de La Política de Aguas. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2000-82524 (accessed on 21 October 2021).spa
dcterms.bibliographicCitation80. Howland, F.; Le Coq, J.-F. Adaptation to climate change in Colombia: Concepts and policies; CIAT: Cali, Colombia, 2018; p. 100spa
dcterms.bibliographicCitation81. Harden, C.P.; Hartsig, J.; Farley, K.A.; Lee, J.; Bremer, L.L. Effects of Land-Use Change on Water in Andean Páramo Grassland Soils. Ann. Assoc. Am. Geogr. 2013, 103, 375–384. https://doi.org/10.1080/00045608.2013.754655spa
dcterms.bibliographicCitation82. Mulligan, M.; Rubiano, J.; Hyman, G.; White, D.; Garcia, J.; Saravia, M.; Gabriel Leon, J.; Selvaraj, J.J.; Guttierez, T.; Leonardo Saenz-Cruz, L. The Andes Basins: Biophysical and Developmental Diversity in a Climate of Change. Water Int. 2010, 35, 472–492. https://doi.org/10.1080/02508060.2010.516330spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/su152215965
dc.subject.keywordsWater pollutionspa
dc.subject.keywordsAgriculturespa
dc.subject.keywordsDrinking waterspa
dc.subject.keywordsland use/land coverspa
dc.subject.keywordsMonitoringspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.