Show simple item record

dc.contributor.authorBaldiris-Navarro, Ildefonso
dc.contributor.authorSanchez, Jorge
dc.contributor.authorTorres Virviescas, Martha
dc.contributor.authorRealpe-Jimenez, Alvaro
dc.contributor.authorFajardo-Cuadro, Juan
dc.coverage.spatialColombia
dc.date.accessioned2023-11-17T16:59:14Z
dc.date.available2023-11-17T16:59:14Z
dc.date.issued2023-05-15
dc.date.submitted2023-11-16
dc.identifier.citationBaldiris-Navarro, Ildefonso.Sanchez, Jorge. Torres Virviescas, Martha. Realpe-Jimenez, Alvaro. Fajardo-Cuadro, Juan."Application of Nannochloris sp. for Landfill Leachate Biotreatment and Lipids Production"Indones. J. Ch em.May 2023;2023, 23 (5), 1456 - 1462. https://doi.org/10.22146/ijc.82483spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12566
dc.description.abstractThe sparse treatment of highly toxic leachates produced in landfills due to the excessive generation of urban solid waste is a common problem worldwide. For this reason, this research aims to show the convenience of the use of algal biotechnology in leachate bioremediation processes. Nannochloris sp. species was used in this research. It was isolated and cultured for bioassays. The leachate was diluted to 5 and 10% in the microalgae cultures during a period of 8 d in which the growth of the species. Then removal of nutrients (phosphate and nitrate) and the production of lipids by the microalgae were measured. Nannochloris sp. removed more than 70% of the phosphates and 60% of the nitrates from samples. This result shows the benefits of using these microalgae to treat landfill leachate at low cost and also with the potential to obtain biolipids that may be useful for biodiesel production.spa
dc.format.extent7
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceIndonesian Journal of Chemistry, Vol. 23 No 5 (2023)spa
dc.titleApplication of Nannochloris sp. for Landfill Leachate Biotreatment and Lipids Productionspa
dcterms.bibliographicCitationChang, H., Quan, X., Zhong, N., Zhang, Z., Lu, C., Li, G., Cheng, Z., and Yang, L., 2018, High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production, Bioresour. Technol., 266 (5), 374–381spa
dcterms.bibliographicCitationChang, H., Feng, H., Wang, R., Zhang, X., Wang, J., Li, C., Zhang, Y., Li, L., and Ho, S., 2023, Enhanced energy recovery from landfill leachate by linking light and dark bio-reactions: Underlying synergistic effects of dual microalgal interaction, Water Res., 231, 119578.spa
dcterms.bibliographicCitationPutra, R.S., and Hastika, F.Y., 2018, Removal of heavy metals from leachate using electro-assisted phytoremediation (EAPR) and up-take by water hyacinth (Eichornia crassipes), Indones. J. Chem., 18 (2), 306–312spa
dcterms.bibliographicCitationViegas, C., Nobre, C., Mota, A., Vilarinho, C., Gouveia, L., and Gonçalves, M., 2021, A circular approach for landfill leachate treatment: Chemical precipitation with biomass ash followed by bioremediation through microalgae, J. Environ. Chem. Eng., 9 (3), 150–163.spa
dcterms.bibliographicCitationTang, C., Gao, X., Hu, D., Dai, D., Qv, M., Liu, D., and Zhu, L., 2023, Nutrient removal and lipid production by the co-cultivation of Chlorella vulgaris and Scenedesmus dimorphus in landfill leachate diluted with recycled harvesting water, Bioresour. Technol., 369, 128496spa
dcterms.bibliographicCitationNair, A.T., Senthilnathan, J., and Nagendra, S.M.S., 2019, Application of the phycoremediation process for tertiary treatment of landfill leachate and carbon dioxide mitigation, J. Water Process Eng., 28, 322–330.spa
dcterms.bibliographicCitationTagliaferro, G.V., Filho, H.J.I., Chandel, A.K., da Silva, S.S., Silva, M.B., and dos Santos, J.C., 2019, Continuous cultivation of Chlorella minutissima 26a in landfill leachate-based medium using concentric tube airlift photobioreactor, Algal Res., 41, 101549.spa
dcterms.bibliographicCitationLiu, X., Chen, G., Tao, Y., and Wang, J., 2020, Application of effluent from WWTP in cultivation of four microalgae for nutrients removal and lipid production under the supply of CO2, Renewable Energy, 149, 708–715.spa
dcterms.bibliographicCitationLakshmikandan, M., Murugesan, A.G., Wang, S., Abomohra, A.E.F., Jovita, P.A., and Kiruthiga, S., 2020, Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production, J. Cleaner Prod., 247, 119398spa
dcterms.bibliographicCitation] Quan, X., Hu, R., Chang, H., Tang, X., Huang, X., Cheng, C., Zhong, N., and Yang, L., 2020, Enhancing microalgae growth and landfill leachate treatment through ozonization, J. Cleaner Prod., 248, 119182.spa
dcterms.bibliographicCitationVyas, S., Patel, A., Nabil Risse, E., Krikigianni, E., Rova, U., Christakopoulos, P., and Matsakas, L., 2022, Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation, Bioresour. Technol., 359, 127494.spa
dcterms.bibliographicCitationPaiva, A.L.P., Gonçalves da Fonseca Silva, D., and Couto, E., 2021, Recycling of landfill leachate nutrients from microalgae and potential applications for biomass valorization, J. Environ. Chem. Eng., 9 (5), 105952spa
dcterms.bibliographicCitationScarponi, P, Izzo, F.C., Bravi, M., and Cavinato, C., 2021, C vulgaris growth batch tests using winery waste digestate as promising raw material for biodiesel and stearin production, Waste Manage., 136, 266–272spa
dcterms.bibliographicCitationHazman, N.A.S., Mohd Yasin, N.H., Takriff, M.S., Abu Hasan, H., Kamarudin, K.F., and Mohd Hakimi, N.I.N., 2018, Integrated palm oil mill effluent treatment and CO2 sequestration by microalgae, Sains Malays., 47 (7), 1455–1464.spa
dcterms.bibliographicCitation] Purba, L.D.A., Othman, F.S., Yuzir, A., Mohamad, S.E., Iwamoto, K., Abdullah, N., Shimizu, K., and Hermana, J., 2022, Enhanced cultivation and lipid production of isolated microalgae strains using municipal wastewater, Environ. Technol. Innovation, 27, 102444.spa
dcterms.bibliographicCitationEdmundson, S.J., and Wilkie, A.C., 2013, Landfill leachate–a water and nutrient resource for algae-based biofuels, Environ. Technol., 34 (13-14), 1849– 1857spa
dcterms.bibliographicCitationMalakar, B., Das, D., and Mohanty, K., 2023, Utilization of Chlorella biomass grown in waste peels-based substrate for simultaneous production of biofuel and value-added products under microalgal biorefinery approach, Waste Biomass Valorization, 2023, s12649-023-02058-y.spa
dcterms.bibliographicCitationEldiehy, K.S.H., Daimary, N., Borah, D., Mandal, M., and Deka, D., 2023, Biodiesel production from Chlorella homosphaera by two-step catalytic conversion using waste radish leaves as a source for heterogeneous catalyst, Appl. Biochem. Biotechnol., 195 (7), 4347–4367.spa
dcterms.bibliographicCitationBaldiris-Navarro, I., and Aponte, J.S., 2020, Growth optimization of Chlorella vulgaris in mixotrophic culture enriched with nutrients using experimental design, IOP Conf. Ser.: Mater. Sci. Eng., 844 (1), 012025spa
dcterms.bibliographicCitationBaird, R., and Bridgewater, L., 2017, Standard Methods for the Examination of Water and Wastewater, 23rd Ed., American Public Health Association, Washington, DC, US.spa
dcterms.bibliographicCitationBligh, E.G., and Dyer, W.J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37 (8), 911–917.spa
dcterms.bibliographicCitationHu, D., Zhang, J., Chu, R., Yin, Z., Hu, J., Nugroho, Y.K., Li, Z., and Zhu, L., 2021, Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production, Bioresour. Technol., 342, 126003.spa
dcterms.bibliographicCitationTighiri, H.O., and Erkurt, E.A., 2019, Biotreatment of landfill leachate by microalgae-bacteria consortium in sequencing batch mode and product utilization, Bioresour Technol., 286, 121396spa
dcterms.bibliographicCitationPaskuliakova, A., Tonry, S., and Touzet, N., 2016, Phycoremediation of landfill leachate with chlorophytes: Phosphate a limiting factor on ammonia nitrogen removal, Water Res., 99, 180– 187.spa
dcterms.bibliographicCitationKhanzada, Z.T., and Övez, S., 2017, Microalgae as a sustainable biological system for improving leachate quality, Energy, 140, 757–765.spa
dcterms.bibliographicCitationBeltrán-Rocha, J.C., Guajardo-Barbosa, C., BarcelóQuintal, I., and López-Chuken, U.J., 2017, Biotratamiento de efluentes secundarios municipales utilizando microalgas: Efecto del pH, nutrientes (C, N y P) y enriquecimiento con CO2, Rev. Biol. Mar. Oceanogr., 52 (3), 417–427.spa
dcterms.bibliographicCitationCai, T., Park, S.Y., and Li, Y., 2013, Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renew. Sust. Energ. Rev., 19, 360–369.spa
dcterms.bibliographicCitation] de Souza, L., Lima, A.S., Matos, Â.P., Wheeler, R.M., Bork, J.A., Vieira Cubas, A.L., and Moecke, E.H.S., 2021, Biopolishing sanitary landfill leachate via cultivation of lipid-rich Scenedesmus microalgae, J. Cleaner Prod., 303, 127094spa
dcterms.bibliographicCitationUmamaheswari, J., and Shanthakumar, S., 2016, Efficacy of microalgae for industrial wastewater treatment: A review on operating conditions, treatment efficiency and biomass productivity, Rev. Environ. Sci. Bio/Technol., 15 (2), 265–284.spa
dcterms.bibliographicCitationHernández-García, A., Velásquez-Orta, S.B., Novelo, E., Yáñez-Noguez, I., Monje-Ramírez, I., and Orta Ledesma, M.T., 2019, Wastewaterleachate treatment by microalgae: Biomass, carbohydrate and lipid production, Ecotoxicol. Environ. Saf., 174, 435–444.spa
dcterms.bibliographicCitationZhao, X., Zhou, Y., Huang, S., Qiu, D., Schideman, L., Chai, X., and Zhao, Y., 2014, Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production, Bioresour. Technol., 156, 322–328.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.22146/ijc.82483
dc.subject.keywordsBioremovalspa
dc.subject.keywordsbio-lipidsspa
dc.subject.keywordsLandfill leachatespa
dc.subject.keywordsMicroalgaespa
dc.subject.keywordsNannochloris spspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Mecánicaspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.