Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Fernández, Joaquin
dc.contributor.authorPuello-Polo, Esneyder
dc.contributor.authorMarquez, Edgar
dc.date.accessioned2023-10-03T14:03:55Z
dc.date.available2023-10-03T14:03:55Z
dc.date.issued2023-09-21
dc.date.submitted2023-10-02
dc.identifier.citationHernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis. Int. J. Mol. Sci. 2023, 24, 14368. https://doi.org/10.3390/ijms241814368.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12540
dc.description.abstractIn this experimental–theoretical study, the effect of furan on Ziegler–Natta catalyst produc tivity, melt flow index (MFI), and mechanical properties of polypropylene were investigated. Through the analysis of the global and local reactivity of the reagents, it was determined that the furan acts as an electron donor. In contrast, the titanium of the ZN catalyst acts as an electron acceptor. It is postulated that this difference in reactivity could lead to forming a furan–titanium complex, which blocks the catalyst’s active sites and reduces its efficiency for propylene polymerization. Theoretical results showed a high adsorption affinity of furan to the active site of the Ti catalyst, indicating that furan tends to bind strongly to the catalyst, thus blocking the active sites and decreasing the availability for propylene polymerization. The experimental data revealed that the presence of furan significantly reduced the productivity of the ZN catalyst by 10, 20, and 41% for concentrations of 6, 12.23, and 25.03 ppm furan, respectively. In addition, a proportional relationship was observed between the furan concentration and the MFI melt index of the polymer, where the higher the furan concentration, the higher the MFI. Likewise, the presence of furan negatively affected the mechanical properties of polypropylene, especially the impact Izod value, with percentage decreases of 9, 18, and 22% for concentrations of 6, 12.23, and 25.03 ppm furan, respectivelyspa
dc.description.sponsorshipUniversidad Tecnológica de Bolivar, Universidad de Cartagena, Universidad de la Costaspa
dc.format.extent12
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceInternational Journal of Molecular Sciencesspa
dc.titleExperimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesisspa
dcterms.bibliographicCitationBora, R.R.; Wang, R.; You, F. Waste polypropylene plastic recycling toward climate change mitigation and circular economy: Energy, environmental, and technoeconomic perspectives. ACS Sustain. Chem. Eng. 2020, 8, 16350–16363.spa
dcterms.bibliographicCitationAlsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2021, 56, 2245–2251.spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropy lene. J. Anal. Appl. Pyrolysis 2022, 161, 105385spa
dcterms.bibliographicCitationKibria, G.; Masuk, N.I.; Safayet, R.; Nguyen, H.Q.; Mourshed, M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. Int. J. Environ. Res. 2023, 17, 20.spa
dcterms.bibliographicCitationBlazsó, M. Recent trends in analytical and applied pyrolysis of polymers. J. Anal. Appl. Pyrolysis 1997, 39, 1–25.spa
dcterms.bibliographicCitationKruse, T.M.; Wong, H.-W.; Broadbelt, L.J. Mechanistic Modeling of Polymer Pyrolysis: Polypropylene. Macromolecules 2003, 36, 9594–9607spa
dcterms.bibliographicCitationCrews, C.; Castle, L. A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci. Technol. 2007, 18, 365–372spa
dcterms.bibliographicCitationVranová, J.; Ciesarová, Z. Furan in Food-a Review. Czech J. Food Sci. 2009, 27, 1–10.spa
dcterms.bibliographicCitationSeok, Y.-J.; Her, J.-Y.; Kim, Y.-G.; Kim, M.Y.; Jeong, S.Y.; Kim, M.K.; Lee, J.-Y.; Kim, C.-I.; Yoon, H.-J.; Lee, K.-G. Furan in Thermally Processed Foods—A Review. Toxicol. Res. 2015, 31, 241–253.spa
dcterms.bibliographicCitationMogol, B.A.; Gökmen, V. Thermal process contaminants: Acrylamide, chloropropanols and furan. Curr. Opin. Food Sci. 2016, 7, 86–92.spa
dcterms.bibliographicCitationGandini, A. The application of the Diels-Alder reaction to polymer syntheses based on furan/maleimide reversible couplings. Polímeros 2005, 15, 95–101.spa
dcterms.bibliographicCitationGandini, A. The behaviour of furan derivatives in polymerization reactions. Adv. Polym. Sci. 1977, 25, 47–96spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers 2023, 15, 2264spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; Hernández-Fernández, J.; López-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2021, 139, 51734.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins during Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808.spa
dcterms.bibliographicCitationCáceres, C.A.C.; Canevarolo, S.V. Correlação entre o Índice de Fluxo à Fusão e a Função da Distribuição de Cisão de Cadeia durante a degradação termo-mecânica do polipropileno. Polímeros 2006, 16, 294–298.spa
dcterms.bibliographicCitationFerg, E.; Bolo, L. A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases. Polym. Test. 2013, 32, 1452–1459.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148.spa
dcterms.bibliographicCitationHernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052.spa
dcterms.bibliographicCitationLorenzo, M.L.R. Determinación y Evaluación de las Emisiones de Dioxinas y Furanos en la Producción de Cemento en Es paña. 2008. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=17310&info=resumen&idioma=SPA (accessed on 5 August 2023)spa
dcterms.bibliographicCitationSarra, A.J.; Clave, P. Dioxinas y Furanos Derivados de la Combustión. In Perspectivas; Revista Científica de la Universidad de Belgrano: Buenos Aires, Argentina, 2018; Volume 1. Available online: https://revistas.ub.edu.ar/index.php/Perspectivas/ article/view/15 (accessed on 5 August 2023).spa
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098. [spa
dcterms.bibliographicCitationHernandez-Fernandez, J.; Lambis, H.; Reyes, R.V. Application of Pyrolysis for the Evaluation of Organic Compounds in Medical Plastic Waste Generated in the City of Cartagena-Colombia Applying TG-GC/MS. Int. J. Mol. Sci. 2023, 24, 5397.spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910.spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2019, 1614, 460736spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying parts per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833.spa
dcterms.bibliographicCitationFernández, J.H.; Cano, H.; Guerra, Y.; Polo, E.P.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M.P. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171.spa
dcterms.bibliographicCitationFernández, J.H.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832.spa
dcterms.bibliographicCitationGómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Rodríguez, M.C.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057spa
dcterms.bibliographicCitationChacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753.spa
dcterms.bibliographicCitationSmith, M.B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; John Wiley & Sons: Hoboken, NJ, USA, 2020.spa
dcterms.bibliographicCitationGayatri, G.; Sastry, G.N. Bottlenecks in the prediction of regioselectivity of [4 + 2] cycloaddition reactions: An assessment of reactivity descriptors. J. Chem. Sci. 2005, 117, 573–582spa
dcterms.bibliographicCitationDomingo, L.R.; Picher, M.T.; Sáez, J.A. Toward an understanding of the unexpected regioselective Hetero-Diels-Alder reactions of asymmetric tetrazines with electron-rich ethylenes: A DFT study. J. Org. Chem. 2009, 74, 2726–2735.spa
dcterms.bibliographicCitationParr, R.G.; Gadre, S.R.; Bartolotti, L.J. Local density functional theory of atoms and molecules. Proc. Natl. Acad. Sci. USA 1979, 76, 2522–2526.spa
dcterms.bibliographicCitationParr, R.G.; Yang, W. Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity. J. Am. Chem. Soc. 1984, 106, 4049–4050spa
dcterms.bibliographicCitationDomingo, L.R.; Aurell, M.; Pérez, P.; Contreras, R. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 2002, 58, 4417–4423.spa
dcterms.bibliographicCitationBerkowitz, M.; Parr, R.G. Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J. Chem. Phys. 1988, 88, 2554–2557.spa
dcterms.bibliographicCitationLangenaeker, W.; de Proft, F.; Geerlings, P. Development of local hardness-related reactivity indices: Their application in a study of the SE at monosubstituted benzenes within the HSAB context. J. Phys. Chem. 1995, 99, 6424–6431.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://doi.org/10.3390/ijms241814368
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsFuranspa
dc.subject.keywordsZiegler–Natta catalystspa
dc.subject.keywordsPolypropylene synthesisspa
dc.subject.keywordsFlow ratespa
dc.subject.keywordsDensity functional theory (DFT)spa
dc.subject.keywordsMechanical propertiesspa
dc.subject.keywordsAdsorption affinityspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.