Show simple item record

dc.contributor.authorHernández Fernández, Joaquin
dc.contributor.authorGonzález-Cuello, Rafael
dc.contributor.authorOrtega-Toro, Rodrigo
dc.identifier.citationHernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Dimethylformamide Impurities as Propylene Polymerization Inhibitor. Polymers 2023, 15, 3806.
dc.description.abstractThis research study examined how the use of dimethylformamide (DMF) as an inhibitor af fects the propylene polymerization process when using a Ziegler–Natta catalyst. Several experiments were carried out using TiCl4/MgCl2 as a catalyst, aluminum trialkyl as a cocatalyst, and different amounts of DMF. Then, we analyzed how DMF influences other aspects of the process, such as catalyst activity, molecular weight, and the number of branches in the polymer chains obtained, using experimental and computational methods. The results revealed that as the DMF/Ti ratio increases, the catalyst activity decreases. From a concentration of 5.11 ppm of DMF, a decrease in catalyst activity was observed, ranging from 45 TM/Kg to 44 TM/Kg. When the DMF concentration was increased to 40.23 ppm, the catalyst activity decreased to 43 TM/Kg, and with 75.32 ppm, it dropped even further to 39 TM/Kg. The highest concentration of DMF evaluated, 89.92 ppm, resulted in a catalyst productivity of 36.5 TM/Kg and lost productivity of 22%. In addition, significant changes in the polymer’s melt flow index (MFI) were noted as the DMF concentration increased. When 89.92 ppm of DMF was added, the MFI loss was 75%, indicating a higher flowability of the poly mer. In this study, it was found that dimethylformamide (DMF) exhibits a strong affinity for the titanium center of a Ziegler–Natta (ZN) catalyst, with an adsorption energy (Ead) of approximately −46.157 kcal/mol, indicating a robust interaction. This affinity is significantly higher compared to propylene, which has an Ead of approximately −5.2 kcal/mol. The study also revealed that the energy gap between the highest occupied molecular orbital (HOMO) of DMF and the lowest unoccupied molecular orbital (SOMO) of the Ziegler–Natta (ZN) catalyst is energetically favorable, with a value of approximately 0.311
dc.description.sponsorshipUniversidad Tecnológica de Bolivar, Universidad de Cartagena, Universidad de la Costaspa
dc.titleDimethylformamide Impurities as Propylene Polymerization Inhibitospa
dc.title.alternativeDimethylformamide Impurities as Propylene Polymerization Inhibitospa
dcterms.bibliographicCitationJuber, F.A.H.; Jawad, Z.A.; Chin, B.L.F.; Yeap, S.P.; Chew, T.L. The prospect of synthesis of PES/PEG blend membranes using blend NMP/DMF for CO2/N2 separation. J. Polym. Res. 2021, 28,
dcterms.bibliographicCitationPublishing, S.; Scrivener, M.; Carmical, P. Introduction to Industrial Polypropylene. 2005. Available online: https://www.eng.uc. edu/~beaucag/Classes/Properties/Books/Dennis%20B.%20Malpass,%20Elliot%20I.%20Band(auth.)%20-%20Introduction% 20to%20Industrial%20Polypropylene_%20Properties,%20Catalysts%20Processes%20(2012) (accessed on 19 June 2023).spa
dcterms.bibliographicCitationJoaquin, H.F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614,
dcterms.bibliographicCitationAlbizzati, E.; Giannini, U.; Morini, G.; Smith, C.A.; Zeigler, R.C. Advances in propylene polymerization with MgCl2 supported catalysts. In Ziegler Catalysts: Recent Scientific Innovations and Technological Improvements; Springer: Berlin/Heidelberg, Germany, 1995; pp. 415–425spa
dcterms.bibliographicCitationZhang, B.; Zhang, L.; Fu, Z.; Fan, Z. Effect of internal electron donor on the active center distribution in MgCl2 -supported Ziegler–Natta catalyst. Catal. Commun. 2015, 69, 147–
dcterms.bibliographicCitationNikolaeva, M.; Mikenas, T.; Matsko, M.; Zakharov, V. Effect of AlEt3 and an External Donor on the Distribution of Active Sites According to Their Stereospecificity in Propylene Polymerization over TiCl4/MgCl2 Catalysts with Different Titanium Content. Macromol. Chem. Phys. 2016, 217, 1384–
dcterms.bibliographicCitationHernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23,
dcterms.bibliographicCitationBahri-Laleh, N. Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl. Surf. Sci. 2016, 379, 395–
dcterms.bibliographicCitationPernusch, D.C.; Spiegel, G.; Paulik, C.; Hofer, W. Influence of Poisons Originating from Chemically Recycled Plastic Waste on the Performance of Ziegler–Natta Catalysts. Macromol. React. Eng. 2022, 16,
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15,
dcterms.bibliographicCitationObot, I.B.; Macdonald, D.D.; Gasem, Z.M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corros. Sci. 2015, 99, 1–
dcterms.bibliographicCitationStukalov, D.V.; Zakharov, V.A. Active Site Formation in MgCl2−Supported Ziegler−Natta Catalysts. A Density Functional Theory Study. J. Phys. Chem. C 2009, 113, 21376–21382spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14,
dcterms.bibliographicCitationJoaquin, H.F.; Juan, L.M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161,
dcterms.bibliographicCitationHernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155,
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14,
dcterms.bibliographicCitationTorabi, S.R.; Fazeli, N.; Zarand, M.G. Effect of dimethyl formamide in the synthesis of linear low density polyethylene on branched and molecular structure. J. Appl. Polym. Sci. 2012, 123, 1267–1272spa
dcterms.bibliographicCitationHeravi, M.M.; Ghavidel, M.; Mohammadkhani, L. Beyond a solvent: Triple roles of dimethylformamide in organic chemistry. RSC Adv. 2018, 8, 27832–
dcterms.bibliographicCitationLouvis, A.R.; Silva, N.A.A. N,N-dimethylformamide (CAS No. 68-12-2). Rev. Virtual Química 2016, 8, 1764–
dcterms.bibliographicCitationMarsella, J.A. Dimethylformamide. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley Online Library: Hoboken, NJ, USA,
dcterms.bibliographicCitationVarnava, K.G.; Sarojini, V. Making Solid-Phase Peptide Synthesis Greener: A Review of the Literature. Chem. Asian J. 2019, 14, 1088–
dcterms.bibliographicCitationKim, T.H.; Kim, S.G. Clinical Outcomes of Occupational Exposure to N,N-Dimethylformamide: Perspectives from Experimental Toxicology. Saf. Health Work 2011, 2, 97–104spa
dcterms.bibliographicCitationLi, M.-J.; Zeng, T. The deleterious effects of N,N-dimethylformamide on liver: A mini-review. Chem. Biol. Interact. 2019, 298, 129–
dcterms.bibliographicCitationZhou, Z.; Sang, L.; Wang, J.; Song, L.; Zhu, L.; Wang, Y.; Xiao, J.; Lian, Y. Relationships among N,N-dimethylformamide exposure, CYP2E1 and TM6SF2 genes, and non-alcoholic fatty liver disease. Ecotoxicol. Environ. Saf. 2021, 228,
dcterms.bibliographicCitationHernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reaction. Polymers 2023, 15,
dc.subject.keywordsN,N-dimethylformamide (DMF)spa
dc.subject.keywordsZiegler–Natta catalystspa
dc.subject.keywordsMelt flow index (MFI)spa
dc.subject.keywordsMolecular weight distribution (MW)spa
dc.subject.keywordsCatalyst inhibitionspa
dc.subject.keywordsDensity functional theory (DFT)spa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.sedeCampus Tecnológicospa

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.