Mostrar el registro sencillo del ítem
Hydropower Advantages over Batteries in Energy Storage of Off-Grid Systems: A Case Study
dc.contributor.author | Guruprasad, Prajwal S. M. | |
dc.contributor.author | Quarant, Emanuele | |
dc.contributor.author | Coronado-Hernández, Oscar E. | |
dc.contributor.author | Ramos, Helena M. | |
dc.date.accessioned | 2023-09-18T21:32:34Z | |
dc.date.available | 2023-09-18T21:32:34Z | |
dc.date.issued | 2023-08-30 | |
dc.date.submitted | 2023-09-18 | |
dc.identifier.citation | Guruprasad, P.S.M.; Quaranta, E.; Coronado-Hernández, O.E.; Ramos, H.M. Hydropower Advantages over Batteries in Energy Storage of Off-Grid Systems: A Case Study. Energies 2023, 16, 6309. https://doi.org/10.3390/en16176309 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12536 | |
dc.description.abstract | Microgrids are decentralized power production systems, where the energy production and consumption are very close to each other. Microgrids generally exploit renewable energy sources, encountering a problem of storage, as the power production from solar and wind is intermittent. This research presents a new integrated methodology and discusses a comparison of batteries and pumped storage hydropower (PSH) as energy storage systems with the integration of wind and solar PV energy sources, which are the major upcoming technologies in the renewable energy sector. We implemented the simulator and optimizer model (HOMER), which develops energy availability usage to obtain optimized renewable energy integration in the microgrid, showing its economic added value. Two scenarios are run with this model—one considers batteries as an energy storage technology and the other considers PSH—in order to obtain the best economic and technical results for the analyzed microgrid. The economic analysis showed a lower net present cost (NPC) and levelized cost of energy (LCOE) for the microgrid with PSH. The results showed that the microgrid with the storage of PSH was economical, with an NPC of 45.8 M€ and an LCOE of 0.379 €/kWh, in comparison with the scenario with batteries, which had an NPC of 95.2 M€ and an LCOE of 0.786 €/kWh. The role of storage was understood by differentiating the data into different seasons, using a Python model. Furthermore, a sensitivity analysis was conducted by varying the capital cost multiplier of solar PV and wind turbines to obtain the best optimal economic solutions. | spa |
dc.format.extent | 28 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Energies, Vol. 16 N° 17 (2023) | spa |
dc.title | Hydropower Advantages over Batteries in Energy Storage of Off-Grid Systems: A Case Study | spa |
dcterms.bibliographicCitation | IEA. World Energy Outlook 2022; IEA: Paris, France, 2022. Available online: https://www.iea.org/reports/world-energy-outlook2022 (accessed on 10 April 2023). | spa |
dcterms.bibliographicCitation | IEA. Electricity Market Report–July 2022; IEA: Paris, France, 2022. Available online: https://www.iea.org/reports/electricitymarket-report-july-2022 (accessed on 10 April 2023). | spa |
dcterms.bibliographicCitation | IRENA. Renewable Energy Statistics 2021; The International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021 | spa |
dcterms.bibliographicCitation | Energy-Charts. Public Net Electricity Generation in Portugal in 2022. Available online: https://energy-charts.info/charts/ energy_pie/chart.htm?l=en&c=PT&year=2022&interval=year (accessed on 10 April 2023). | spa |
dcterms.bibliographicCitation | Ramos, H.M.; Vargas, B.; Saldanha, J.R. New Integrated Energy Solution Idealization: Hybrid for Renewable Energy Network (Hy4REN). Energies 2022, 15, 3921. | spa |
dcterms.bibliographicCitation | Rahman, M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. | spa |
dcterms.bibliographicCitation | IEA. Executive Summary–Hydropower Special Market Report–Analysis. Available online: https://www.iea.org/reports/ hydropower-special-market-report/executive-summary (accessed on 10 April 2023). | spa |
dcterms.bibliographicCitation | Immendoerfer, A.; Tietze, I.; Hottenroth, H.; Viere, T. Life-cycle impacts of pumped hydropower storage and battery storage. Int. J. Energy Environ. Eng. 2017, 8, 231–245 | spa |
dcterms.bibliographicCitation | Javed, M.S.; Zhong, D.; Ma, T.; Song, A.; Ahmed, S. Hybrid pumped hydro and battery storage for renewable energy based power supply system. Appl. Energy 2020, 257, 114026. | spa |
dcterms.bibliographicCitation | Ghanjati, C.; Tnani, S. Optimal sizing and energy management of a stand-alone photovoltaic/pumped storage hydropower/battery hybrid system using Genetic Algorithm for reducing cost and increasing reliability. Energy Environ. 2022 | spa |
dcterms.bibliographicCitation | PNNL. Open or Closed: Pumped Storage Hydropower Is on the Rise. Available online: https://www.pnnl.gov/news-media/ open-or-closed-pumped-storage-hydropower-rise#:~:text=Open%2Dloop%20versus%20closed%2Dloop,to%20a%20natural% 20water%20source (accessed on 16 May 2023) | spa |
dcterms.bibliographicCitation | Pumped Storage Hydropower. Available online: https://www.hydropower.org/factsheets/pumped-storage (accessed on 6 February 2023). | spa |
dcterms.bibliographicCitation | Energy-Charts. Public Net Electricity Generation in Portugal in Week 35 2023. Available online: https://energy-charts.info/ charts/power/chart.htm?l=en&c=PT (accessed on 6 February 2023). | spa |
dcterms.bibliographicCitation | Divya, K.C.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520 | spa |
dcterms.bibliographicCitation | Poullikkas, A. A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 2013, 27, 778–788 | spa |
dcterms.bibliographicCitation | Keshan, H.; Thornburg, J.; Ustun, T. Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems. In Proceedings of the 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, Malaysia, 14–15 November 2016 | spa |
dcterms.bibliographicCitation | Sinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205 | spa |
dcterms.bibliographicCitation | Krishna, K.S.; Kumar, K.S. A review on hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2015, 52, 907–916. | spa |
dcterms.bibliographicCitation | Lambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. In Integration of Alternative Sources of Energy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; Volume 1, pp. 379–385 | spa |
dcterms.bibliographicCitation | Demiroren, A.; Yilmaz, U. Analysis of change in electric energy cost with using renewable energy sources in Gökceada, Turkey: An island example. Renew. Sustain. Energy Rev. 2010, 14, 323–333 | spa |
dcterms.bibliographicCitation | Yimen, N.; Hamandjoda, O.; Meva’a, L.; Ndzana, B.; Nganhou, J. Analyzing of a Photovoltaic/Wind/Biogas/Pumped-Hydro Off-Grid Hybrid System for Rural Electrification in Sub-Saharan Africa—Case Study of Djoundé in Northern Cameroon. Energies 2018, 11, 2644 | spa |
dcterms.bibliographicCitation | Dalton, G.; Lockington, D.; Baldock, T. Feasibility analysis of renewable energy supply options for a grid-connected large hotel. Renew. Energy 2009, 34, 955–964. | spa |
dcterms.bibliographicCitation | Thomas, D.; Deblecker, O.; Ioakimidis, C.S. Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration. Energy 2016, 116, 364–379 | spa |
dcterms.bibliographicCitation | He, L.; Zhang, S.; Chen, Y.; Ren, L.; Li, J. Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China. Renew. Sustain. Energy Rev. 2018, 93, 631–641. | spa |
dcterms.bibliographicCitation | Sen, R.; Bhattacharyya, S.C. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renew. Energy 2014, 62, 388–398 | spa |
dcterms.bibliographicCitation | Energy Market Information System. Available online: https://mercado.ren.pt/EN/Gas/MarketInfo/Load/Actual/Pages/ Hourly.aspx (accessed on 10 April 2023). | spa |
dcterms.bibliographicCitation | Rahm, E.; Do, H.H. Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 2000, 23, 3–13. | spa |
dcterms.bibliographicCitation | Hellerstein, J.M. Quantitative Data Cleaning for Large Databases; United Nations Economic Commission for Europe (UNECE): Geneva, Switzerland, 2008; Volume 25, pp. 1–42. | spa |
dcterms.bibliographicCitation | . How HOMER Calculates Clearness Index. Available online: https://www.homerenergy.com/products/pro/docs/3.9/how_ homer_calculates_clearness_index.html (accessed on 10 April 2023). | spa |
dcterms.bibliographicCitation | Abdelhady, S. Techno-economic study and the optimal hybrid renewable energy system design for a hotel building with net zero energy and net zero carbon emissions. Energy Convers. Manag. 2023, 289, 117195 | spa |
dcterms.bibliographicCitation | Net Present Cost. Available online: https://www.homerenergy.com/products/grid/docs/1.8/net_present_cost.html (accessed on 10 April 2023). | spa |
dcterms.bibliographicCitation | 3. Levelized Cost of Energy. Available online: https://www.homerenergy.com/products/pro/docs/3.11/levelized_cost_of_energy. html (accessed on 8 May 2023). | spa |
dcterms.bibliographicCitation | Operation and Maintenance Cost. Available online: https://www.homerenergy.com/products/pro/docs/3.11/operation_and_ maintenance_cost.html (accessed on 14 June 2023) | spa |
dcterms.bibliographicCitation | E-48–ENERCON GmbH–Wind Turbine Datasheet|GlobalSpec. Available online: https://datasheets.globalspec.com/ds/ enercon/e-48/965dc900-6d47-4188-8415-d3e10b84b523 (accessed on 8 May 2023). | spa |
dcterms.bibliographicCitation | Distributed Generation Energy Technology Capital Costs. Energy Analysis|NREL. Available online: https://www.nrel.gov/ analysis/tech-cost-dg.html (accessed on 8 May 2023). | spa |
dcterms.bibliographicCitation | Wind Turbine Outputs. Available online: https://www.homerenergy.com/products/pro/docs/3.10/wind_turbine_outputs.html (accessed on 16 May 2023). | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.3390/en16176309 | |
dc.subject.keywords | Hydropower | spa |
dc.subject.keywords | Energy storage | spa |
dc.subject.keywords | Pumped storage hydropower (PSH) | spa |
dc.subject.keywords | Batteries | spa |
dc.subject.keywords | Net present cost (NPC) | spa |
dc.subject.keywords | Levelized cost of energy (LCOE) | spa |
dc.subject.keywords | Microgrids | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.