Mostrar el registro sencillo del ítem

dc.contributor.authorGuruprasad, Prajwal S. M.
dc.contributor.authorQuarant, Emanuele
dc.contributor.authorCoronado-Hernández, Oscar E.
dc.contributor.authorRamos, Helena M.
dc.date.accessioned2023-09-18T21:32:34Z
dc.date.available2023-09-18T21:32:34Z
dc.date.issued2023-08-30
dc.date.submitted2023-09-18
dc.identifier.citationGuruprasad, P.S.M.; Quaranta, E.; Coronado-Hernández, O.E.; Ramos, H.M. Hydropower Advantages over Batteries in Energy Storage of Off-Grid Systems: A Case Study. Energies 2023, 16, 6309. https://doi.org/10.3390/en16176309spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12536
dc.description.abstractMicrogrids are decentralized power production systems, where the energy production and consumption are very close to each other. Microgrids generally exploit renewable energy sources, encountering a problem of storage, as the power production from solar and wind is intermittent. This research presents a new integrated methodology and discusses a comparison of batteries and pumped storage hydropower (PSH) as energy storage systems with the integration of wind and solar PV energy sources, which are the major upcoming technologies in the renewable energy sector. We implemented the simulator and optimizer model (HOMER), which develops energy availability usage to obtain optimized renewable energy integration in the microgrid, showing its economic added value. Two scenarios are run with this model—one considers batteries as an energy storage technology and the other considers PSH—in order to obtain the best economic and technical results for the analyzed microgrid. The economic analysis showed a lower net present cost (NPC) and levelized cost of energy (LCOE) for the microgrid with PSH. The results showed that the microgrid with the storage of PSH was economical, with an NPC of 45.8 M€ and an LCOE of 0.379 €/kWh, in comparison with the scenario with batteries, which had an NPC of 95.2 M€ and an LCOE of 0.786 €/kWh. The role of storage was understood by differentiating the data into different seasons, using a Python model. Furthermore, a sensitivity analysis was conducted by varying the capital cost multiplier of solar PV and wind turbines to obtain the best optimal economic solutions.spa
dc.format.extent28 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergies, Vol. 16 N° 17 (2023)spa
dc.titleHydropower Advantages over Batteries in Energy Storage of Off-Grid Systems: A Case Studyspa
dcterms.bibliographicCitationIEA. World Energy Outlook 2022; IEA: Paris, France, 2022. Available online: https://www.iea.org/reports/world-energy-outlook2022 (accessed on 10 April 2023).spa
dcterms.bibliographicCitationIEA. Electricity Market Report–July 2022; IEA: Paris, France, 2022. Available online: https://www.iea.org/reports/electricitymarket-report-july-2022 (accessed on 10 April 2023).spa
dcterms.bibliographicCitationIRENA. Renewable Energy Statistics 2021; The International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021spa
dcterms.bibliographicCitationEnergy-Charts. Public Net Electricity Generation in Portugal in 2022. Available online: https://energy-charts.info/charts/ energy_pie/chart.htm?l=en&c=PT&year=2022&interval=year (accessed on 10 April 2023).spa
dcterms.bibliographicCitationRamos, H.M.; Vargas, B.; Saldanha, J.R. New Integrated Energy Solution Idealization: Hybrid for Renewable Energy Network (Hy4REN). Energies 2022, 15, 3921.spa
dcterms.bibliographicCitationRahman, M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295.spa
dcterms.bibliographicCitationIEA. Executive Summary–Hydropower Special Market Report–Analysis. Available online: https://www.iea.org/reports/ hydropower-special-market-report/executive-summary (accessed on 10 April 2023).spa
dcterms.bibliographicCitationImmendoerfer, A.; Tietze, I.; Hottenroth, H.; Viere, T. Life-cycle impacts of pumped hydropower storage and battery storage. Int. J. Energy Environ. Eng. 2017, 8, 231–245spa
dcterms.bibliographicCitationJaved, M.S.; Zhong, D.; Ma, T.; Song, A.; Ahmed, S. Hybrid pumped hydro and battery storage for renewable energy based power supply system. Appl. Energy 2020, 257, 114026.spa
dcterms.bibliographicCitationGhanjati, C.; Tnani, S. Optimal sizing and energy management of a stand-alone photovoltaic/pumped storage hydropower/battery hybrid system using Genetic Algorithm for reducing cost and increasing reliability. Energy Environ. 2022spa
dcterms.bibliographicCitationPNNL. Open or Closed: Pumped Storage Hydropower Is on the Rise. Available online: https://www.pnnl.gov/news-media/ open-or-closed-pumped-storage-hydropower-rise#:~:text=Open%2Dloop%20versus%20closed%2Dloop,to%20a%20natural% 20water%20source (accessed on 16 May 2023)spa
dcterms.bibliographicCitationPumped Storage Hydropower. Available online: https://www.hydropower.org/factsheets/pumped-storage (accessed on 6 February 2023).spa
dcterms.bibliographicCitationEnergy-Charts. Public Net Electricity Generation in Portugal in Week 35 2023. Available online: https://energy-charts.info/ charts/power/chart.htm?l=en&c=PT (accessed on 6 February 2023).spa
dcterms.bibliographicCitationDivya, K.C.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520spa
dcterms.bibliographicCitationPoullikkas, A. A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 2013, 27, 778–788spa
dcterms.bibliographicCitationKeshan, H.; Thornburg, J.; Ustun, T. Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems. In Proceedings of the 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, Malaysia, 14–15 November 2016spa
dcterms.bibliographicCitationSinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205spa
dcterms.bibliographicCitationKrishna, K.S.; Kumar, K.S. A review on hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2015, 52, 907–916.spa
dcterms.bibliographicCitationLambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. In Integration of Alternative Sources of Energy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; Volume 1, pp. 379–385spa
dcterms.bibliographicCitationDemiroren, A.; Yilmaz, U. Analysis of change in electric energy cost with using renewable energy sources in Gökceada, Turkey: An island example. Renew. Sustain. Energy Rev. 2010, 14, 323–333spa
dcterms.bibliographicCitationYimen, N.; Hamandjoda, O.; Meva’a, L.; Ndzana, B.; Nganhou, J. Analyzing of a Photovoltaic/Wind/Biogas/Pumped-Hydro Off-Grid Hybrid System for Rural Electrification in Sub-Saharan Africa—Case Study of Djoundé in Northern Cameroon. Energies 2018, 11, 2644spa
dcterms.bibliographicCitationDalton, G.; Lockington, D.; Baldock, T. Feasibility analysis of renewable energy supply options for a grid-connected large hotel. Renew. Energy 2009, 34, 955–964.spa
dcterms.bibliographicCitationThomas, D.; Deblecker, O.; Ioakimidis, C.S. Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration. Energy 2016, 116, 364–379spa
dcterms.bibliographicCitationHe, L.; Zhang, S.; Chen, Y.; Ren, L.; Li, J. Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China. Renew. Sustain. Energy Rev. 2018, 93, 631–641.spa
dcterms.bibliographicCitationSen, R.; Bhattacharyya, S.C. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renew. Energy 2014, 62, 388–398spa
dcterms.bibliographicCitationEnergy Market Information System. Available online: https://mercado.ren.pt/EN/Gas/MarketInfo/Load/Actual/Pages/ Hourly.aspx (accessed on 10 April 2023).spa
dcterms.bibliographicCitationRahm, E.; Do, H.H. Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 2000, 23, 3–13.spa
dcterms.bibliographicCitationHellerstein, J.M. Quantitative Data Cleaning for Large Databases; United Nations Economic Commission for Europe (UNECE): Geneva, Switzerland, 2008; Volume 25, pp. 1–42.spa
dcterms.bibliographicCitation. How HOMER Calculates Clearness Index. Available online: https://www.homerenergy.com/products/pro/docs/3.9/how_ homer_calculates_clearness_index.html (accessed on 10 April 2023).spa
dcterms.bibliographicCitationAbdelhady, S. Techno-economic study and the optimal hybrid renewable energy system design for a hotel building with net zero energy and net zero carbon emissions. Energy Convers. Manag. 2023, 289, 117195spa
dcterms.bibliographicCitationNet Present Cost. Available online: https://www.homerenergy.com/products/grid/docs/1.8/net_present_cost.html (accessed on 10 April 2023).spa
dcterms.bibliographicCitation3. Levelized Cost of Energy. Available online: https://www.homerenergy.com/products/pro/docs/3.11/levelized_cost_of_energy. html (accessed on 8 May 2023).spa
dcterms.bibliographicCitationOperation and Maintenance Cost. Available online: https://www.homerenergy.com/products/pro/docs/3.11/operation_and_ maintenance_cost.html (accessed on 14 June 2023)spa
dcterms.bibliographicCitationE-48–ENERCON GmbH–Wind Turbine Datasheet|GlobalSpec. Available online: https://datasheets.globalspec.com/ds/ enercon/e-48/965dc900-6d47-4188-8415-d3e10b84b523 (accessed on 8 May 2023).spa
dcterms.bibliographicCitationDistributed Generation Energy Technology Capital Costs. Energy Analysis|NREL. Available online: https://www.nrel.gov/ analysis/tech-cost-dg.html (accessed on 8 May 2023).spa
dcterms.bibliographicCitationWind Turbine Outputs. Available online: https://www.homerenergy.com/products/pro/docs/3.10/wind_turbine_outputs.html (accessed on 16 May 2023).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/en16176309
dc.subject.keywordsHydropowerspa
dc.subject.keywordsEnergy storagespa
dc.subject.keywordsPumped storage hydropower (PSH)spa
dc.subject.keywordsBatteriesspa
dc.subject.keywordsNet present cost (NPC)spa
dc.subject.keywordsLevelized cost of energy (LCOE)spa
dc.subject.keywordsMicrogridsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.