Mostrar el registro sencillo del ítem
SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera
dc.contributor.author | Sierra Porta, David | |
dc.contributor.author | Herrera Acevedo, Daniel | |
dc.contributor.author | Tarazona-Alvarado, Miguel | |
dc.contributor.author | Hernández Díaz, Yaleidys | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2023-09-12T12:05:57Z | |
dc.date.available | 2023-09-12T12:05:57Z | |
dc.date.issued | 2023-04-22 | |
dc.date.submitted | 2023-09-11 | |
dc.identifier.citation | Porta, D. S., Acevedo, D. H., Tarazona-Alvarado, M., & Díaz, Y. H. (2023). SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera. Revista Mexicana de Física E, 20(2 Jul-Dec), 020208-1. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12483 | |
dc.description.abstract | En este manuscrito presentamos una aplicación web con soporte en lenguaje de programación PYTHON, REACTJS y JAVASCRIPT, libre y abierta, para el desarrollo de una actividad de enseñanza-aprendizaje de la astronomía, específicamente para el cálculo de la rotación diferencial del Sol para estudiantes y publicó en general en edad escolar entre 10 y 18 años. El propósito fundamental es la de difundir el conocimiento del Sol y algunas de sus propiedades. La aplicación web es autocontenida y con suficiente guía y ayuda para que cualquiera pueda usarla, además de su dinamismo y diseño innovador, pretende presentar estrategias agradables para la enseñanza y aprendizaje de la ciencia en torno al Sol. | spa |
dc.description.abstract | In this manuscript we present a web application with support in PYTHON, REACTJS and JAVASCRIPT programming language, free and open, for the development of a teaching-learning activity of astronomy, specifically for the calculation of the differential rotation of the Sun for students and general public in school age between 10 and 18 years old. The main purpose is to spread the knowledge of the Sun and some of its properties. The web application is self-contained and with enough guidance and help for anyone to use it, in addition to its dynamism and innovative design, it aims to present pleasant strategies for teaching and learning science around the Sun. | spa |
dc.format.extent | 12 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Revista Mexicana de Física E | spa |
dc.title | SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera | spa |
dcterms.bibliographicCitation | T. Wiegelmann, J. K. Thalmann, and S. K. Solanki, The magnetic field in the solar atmosphere, The Astronomy and Astrophysics Review 22 (2014) 1, https://doi.org/10.1007/ s00159-014-0078-7. | spa |
dcterms.bibliographicCitation | M. Georgoulis et al., Solar magnetic helicity injected into the heliosphere: magnitude, balance, and periodicities over solar cycle 23, The Astrophysical Journal 705 (2009) L48, https: //doi.org/10.1088/0004-637X/705/1/L48 | spa |
dcterms.bibliographicCitation | . P. Demoulin and E. Pariat, Modelling and observations of ´ photospheric magnetic helicity, Advances in Space Research 43 (2009) 1013, https://doi.org/10.1016/j.asr. 2008.12.004. | spa |
dcterms.bibliographicCitation | H. Moradi et al., Modeling the subsurface structure of sunspots, Solar Physics 267 (2010) 1, https://doi.org/10. 1007/s11207-010-9630-4. | spa |
dcterms.bibliographicCitation | . J. H. Thomas and N. O. Weiss, The theory of sunspots, Sunspots: Theory and Observations (1992) 3, https://doi. org/10.1007/978-94-011-2769-1 1. | spa |
dcterms.bibliographicCitation | . G. E. Hale, Solar vortices (contributions from the Mt. Wilson Solar Observatory, no. 26), Astrophysical Journal, 28 (1908) 100 | spa |
dcterms.bibliographicCitation | G. E. Hale, Preliminary results of an attempt to detect the general magnetic field of the Sun, The Astrophysical Journal 38 (1913) 27 | spa |
dcterms.bibliographicCitation | R. F. Stein, Solar surface magneto-convection, Living Reviews in Solar Physics 9 (2012) 1, https://doi.org/10. 12942/lrsp-2012-4. | spa |
dcterms.bibliographicCitation | A. Vogler ¨ et al., Simulations of magneto-convection in the solar photosphere-Equations, methods, and results of the MURaM code, Astronomy & Astrophysics 429 (2005) 335, https: //doi.org/10.1051/0004-6361:20041507. | spa |
dcterms.bibliographicCitation | . S. K. Solanki, Sunspots: An overview., Astronomy & Astrophysics Review 11 (2003) 4, https://doi.org/10.1007/ s00159-003-0018-4. | spa |
dcterms.bibliographicCitation | M. Stix, The Sun’s differential rotation, In Reviews in Modern Astronomy 2 (Springer, 1989) pp. 248-266, https://doi. org/10.1007/978-3-642-75183-7 23 | spa |
dcterms.bibliographicCitation | . R. Arlt and J. M. Vaquero, Historical sunspot records, Living Reviews in Solar Physics 17 (2020) 1, https://doi.org/ 10.1007/s41116-020-0023-y. | spa |
dcterms.bibliographicCitation | K. L. Harvey, The cyclic behavior of solar activity, In The solar cycle, 27 (1992) 335 | spa |
dcterms.bibliographicCitation | D. Sierra-Porta, Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23, Astrophysics and Space Science 363 (2018) 1, https: //doi.org/10.1007/s10509-018-3360-8 | spa |
dcterms.bibliographicCitation | D. Sierra-Porta, On the fractal properties of cosmic rays and Sun dynamics cross-correlations, Astrophysics and Space Science 367 (2022) 1, https://doi.org/10.1007/ s10509-022-04151-5. | spa |
dcterms.bibliographicCitation | 6. D. Sierra-Porta, M. Tarazona-Alvarado, and J. Villalba- Acebedo, Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling, Advances in Space Research (2023), https://doi.org/10. 1016/j.asr.2023.02.044. | spa |
dcterms.bibliographicCitation | I. Sammis, F. Tang, and H. Zirin, The dependence of large flare occurrence on the magnetic structure of sunspots, The Astrophysical Journal 540 (2000) 583, https://doi.org/ 10.1086/309303. | spa |
dcterms.bibliographicCitation | J. M. Borrero and K. Ichimoto, Magnetic structure of sunspots, Living Reviews in Solar Physics 8 (2011) 1, https: //doi.org/10.12942/lrsp-2011-4. | spa |
dcterms.bibliographicCitation | S. Tomczyk and E. Landi, Upgraded coronal multi-channel polarimeter (UCoMP), Solar Heliospheric and INterplanetary Environment (SHINE 2019) (2019) 131 | spa |
dcterms.bibliographicCitation | S. Tomczyk et al., First Images from the Upgraded Coronal Multi-channel Polarimeter (UCoMP), In AGU Fall Meeting Abstracts, 2021 (2021) 2089. | spa |
dcterms.bibliographicCitation | M. P. Rast et al., Critical science plan for the Daniel K. Inouye solar telescope (DKIST), Solar Physics 296 (2021) 1, https: //doi.org/10.1007/s11207-021-01789-2. | spa |
dcterms.bibliographicCitation | F. Woger ¨ et al., The Daniel K. Inouye Solar Telescope (DKIST)/Visible Broadband Imager (VBI), Solar Physics 296 (2021) 1, https://doi.org/10.1007/ s11207-021-01881-7 | spa |
dcterms.bibliographicCitation | . C. Rao, et al., 1.8-m solar telescope in China: Chinese large solar telescope, Journal of Astronomical Telescopes, Instruments, and Systems 1 (2015) 024001, https://doi.org/ 10.1117/1.JATIS.1.2.024001. | spa |
dcterms.bibliographicCitation | R. Volkmer, et al., GREGOR: the new 1.5-m solar telescope on Tenerife, In Innovative Telescopes and Instrumentation for Solar Astrophysics, 4853 (2003) 60, https://doi.org/10. 1117/12.471367. | spa |
dcterms.bibliographicCitation | O. Von Der Luhe, ¨ et al., GREGOR: a 1.5 m telescope for solar research, Astronomische Nachrichten: Astronomical Notes 4853 (2001) 353, https: //doi.org/10.1002/1521-3994(200112)322: 5/6%3C353::AID-ASNA353%3E3.0.CO;2-Z. | spa |
dcterms.bibliographicCitation | Y. Yan et al., The Chinese spectral radioheliograph-CSRH, Earth, Moon, and Planets 104 (2009) 97, https://doi. org/10.1007/s11038-008-9254-y. | spa |
dcterms.bibliographicCitation | W. Wang et al., Calibration and data processing for a Chinese Spectral Radioheliograph in the decimeterwave range, Publications of the Astronomical Society of Japan 65 (2013), https://doi.org/10.1093/pasj/65.sp1.S18. | spa |
dcterms.bibliographicCitation | A. Valio et al., POlarization Emission of Millimeter Activity at the Sun (POEMAS): new circular polarization solar telescopes at two millimeter wavelength ranges, Solar Physics 283 (2013) 651, https://doi.org/10.1007/ s11207-013-0237-4. | spa |
dcterms.bibliographicCitation | T. J. Schmit et al., Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R, Journal of Applied Remote Sensing 7 (2013) 073462, https://doi.org/10.1117/1.JRS.7.073462. | spa |
dcterms.bibliographicCitation | B. K. Dichter et al., Specification, design, and calibration of the space weather suite of instruments on the NOAA GOESR program spacecraft, IEEE Transactions on Nuclear Science 62 (2015) 2776, https:77doi.org/10.1109/TNS. 20152477997. | spa |
dcterms.bibliographicCitation | K. Paularena and J. King, NASA’s IMP 8 spacecraft, In Interball in the ISTP Program, pp. 145-154, (Springer, 1999), https: //doi.org/10.1007/978-94-011-4487-2 11. | spa |
dcterms.bibliographicCitation | V. Domingo, B. Fleck, and A. Poland, The scientific payload of the space-based Solar and Heliospheric Observatory (SOHO), Space Science Reviews 70 (1994) 7, https://doi. org/10.1007/BF00777835 | spa |
dcterms.bibliographicCitation | . V. Domingo, B. Fleck, and A. Poland, SOHO: the solar and heliospheric observatory, Space Science Reviews 72 (1995) 81, https://doi.org/10.1007/BF00768758 | spa |
dcterms.bibliographicCitation | D. Muller ¨ et al., The solar orbiter mission-science overview, Astronomy & Astrophysics 642 (2020) A1, https://doi. org/10.1051/0004-6361/202038467. | spa |
dcterms.bibliographicCitation | A. W. Case et al., The solar probe cup on the Parker Solar Probe, The Astrophysical Journal Supplement Series 246 (2020) 43, https://doi.org/10.3847/1538-4365/ ab5a7b. | spa |
dcterms.bibliographicCitation | J. Halekas, et al., Electrons in the young solar wind: First results from the parker solar probe, The Astrophysical Journal Supplement Series 246 (2020) 22, https://doi.org/10. 3847/1538-4365/ab4cec. | spa |
dcterms.bibliographicCitation | T. J. Immel, et al., The ionospheric connection explorer mission: Mission goals and design, Space Science Reviews 214 (2018) 1, https://doi.org/10.1007/ s11214-017-0449-2. | spa |
dcterms.bibliographicCitation | R. Howard, P. Gilman, and P. Gilman, Rotation of the sun measured from Mount Wilson white-light images, The Astrophysical Journal 283 (1984) 373. | spa |
dcterms.bibliographicCitation | E. Schroter, The solar differential rotation: present status of ob- ¨ servations, Solar Physics 100 (1985) 141. | spa |
dcterms.bibliographicCitation | J. G. Beck, A comparison of differential rotation measurements-(Invited Review), Solar physics 191 (2000) 47, https://doi.org/10.1023/A:1005226402796 | spa |
dcterms.bibliographicCitation | P. Scherrer, J. Wilcox, and L. Svalgaard, Rotation of the sun: observations at Stanford, Astrophys. J.; (United States) 241 (1980) | spa |
dcterms.bibliographicCitation | R. Howard, J. E. Boyden, and B. J. Labonte, Solar rotation measurements at Mount Wilson: I. Analysis and instrumental effects, Solar Physics 66 (1980) 167. | spa |
dcterms.bibliographicCitation | R. K. Ulrich et al., Solar rotation measurements at MountWilson: V. Reanalysis of 21 years of data, Solar Physics 117 (1988) 291. | spa |
dcterms.bibliographicCitation | . J. Beck, T. Duvall Jr, and P. Scherrer, Long-lived giant cells detected at the surface of the Sun, Nature 394 (1998) 653. | spa |
dcterms.bibliographicCitation | R. Ulrich, Identification of very large scale velocity structures on the solar surface using Mt Wilson synoptic observations, In Structure and Dynamics of the Interior of the Sun and Sun-like Stars, 418 (1998) 851. | spa |
dcterms.bibliographicCitation | . D. A. Lamb, Measurements of solar differential rotation and meridional circulation from tracking of photospheric magnetic features, The Astrophysical Journal 836 (2017) 10, https: //doi.org/10.3847/1538-4357/836/1/10. | spa |
dcterms.bibliographicCitation | B. Shneiderman, Science 2.0, Science 319 (2008) 1349 | spa |
dcterms.bibliographicCitation | T. Bucheler and J. H. Sieg, Understanding science 2.0: Crowd- ¨ sourcing and open innovation in the scientific method, Procedia Computer Science 7 (2011) 327, https://doi.org/10. 1016/j.procs.2011.09.014. | spa |
dcterms.bibliographicCitation | . R. Bonney et al., Can citizen science enhance public understanding of science?, Public understanding of science 25 (2016) 2, https://doi.org/10.1177/0963662515607406. | spa |
dcterms.bibliographicCitation | J. P. Cohn, Citizen science: Can volunteers do real research?, BioScience 58 (2008) 192, https://doi.org/10.1641/ B580303. | spa |
dcterms.bibliographicCitation | P. J. Marshall, C. J. Lintott, and L. N. Fletcher, Ideas for citizen science in astronomy, Annual Review of Astronomy and Astrophysics 53 (2015) 247. | spa |
dcterms.bibliographicCitation | The SunPy Community et al., The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package, The Astrophysical Journal 890 (2020) 68, https://doi.org/ 10.3847/1538-4357/ab4f7a. | spa |
dcterms.bibliographicCitation | . J. Meeus, Astronomical algorithms, Richmond, VA:WillmannBell (1998). | spa |
dcterms.bibliographicCitation | C. Rao et al., First light of the 1.8-m solar telescopeCLST (2020), https://doi.org/10.1007/ s11433-019-1557-3. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.31349/RevMexFis.20.020208 | |
dc.subject.keywords | Rotación diferencial del sol | spa |
dc.subject.keywords | Manchas solares | spa |
dc.subject.keywords | Divulgación científica | spa |
dc.subject.keywords | Ciencia de datos | spa |
dc.subject.keywords | Differential Sun’s rotation | spa |
dc.subject.keywords | Sunspots | spa |
dc.subject.keywords | Scientific outreach | spa |
dc.subject.keywords | Data science | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.