Mostrar el registro sencillo del ítem

dc.contributor.authorSierra Porta, David
dc.contributor.authorHerrera Acevedo, Daniel
dc.contributor.authorTarazona-Alvarado, Miguel
dc.contributor.authorHernández Díaz, Yaleidys
dc.coverage.spatialColombia
dc.date.accessioned2023-09-12T12:05:57Z
dc.date.available2023-09-12T12:05:57Z
dc.date.issued2023-04-22
dc.date.submitted2023-09-11
dc.identifier.citationPorta, D. S., Acevedo, D. H., Tarazona-Alvarado, M., & Díaz, Y. H. (2023). SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera. Revista Mexicana de Física E, 20(2 Jul-Dec), 020208-1.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12483
dc.description.abstractEn este manuscrito presentamos una aplicación web con soporte en lenguaje de programación PYTHON, REACTJS y JAVASCRIPT, libre y abierta, para el desarrollo de una actividad de enseñanza-aprendizaje de la astronomía, específicamente para el cálculo de la rotación diferencial del Sol para estudiantes y publicó en general en edad escolar entre 10 y 18 años. El propósito fundamental es la de difundir el conocimiento del Sol y algunas de sus propiedades. La aplicación web es autocontenida y con suficiente guía y ayuda para que cualquiera pueda usarla, además de su dinamismo y diseño innovador, pretende presentar estrategias agradables para la enseñanza y aprendizaje de la ciencia en torno al Sol.spa
dc.description.abstractIn this manuscript we present a web application with support in PYTHON, REACTJS and JAVASCRIPT programming language, free and open, for the development of a teaching-learning activity of astronomy, specifically for the calculation of the differential rotation of the Sun for students and general public in school age between 10 and 18 years old. The main purpose is to spread the knowledge of the Sun and some of its properties. The web application is self-contained and with enough guidance and help for anyone to use it, in addition to its dynamism and innovative design, it aims to present pleasant strategies for teaching and learning science around the Sun.spa
dc.format.extent12 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceRevista Mexicana de Física Espa
dc.titleSunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosferaspa
dcterms.bibliographicCitationT. Wiegelmann, J. K. Thalmann, and S. K. Solanki, The magnetic field in the solar atmosphere, The Astronomy and Astrophysics Review 22 (2014) 1, https://doi.org/10.1007/ s00159-014-0078-7.spa
dcterms.bibliographicCitationM. Georgoulis et al., Solar magnetic helicity injected into the heliosphere: magnitude, balance, and periodicities over solar cycle 23, The Astrophysical Journal 705 (2009) L48, https: //doi.org/10.1088/0004-637X/705/1/L48spa
dcterms.bibliographicCitation. P. Demoulin and E. Pariat, Modelling and observations of ´ photospheric magnetic helicity, Advances in Space Research 43 (2009) 1013, https://doi.org/10.1016/j.asr. 2008.12.004.spa
dcterms.bibliographicCitationH. Moradi et al., Modeling the subsurface structure of sunspots, Solar Physics 267 (2010) 1, https://doi.org/10. 1007/s11207-010-9630-4.spa
dcterms.bibliographicCitation. J. H. Thomas and N. O. Weiss, The theory of sunspots, Sunspots: Theory and Observations (1992) 3, https://doi. org/10.1007/978-94-011-2769-1 1.spa
dcterms.bibliographicCitation. G. E. Hale, Solar vortices (contributions from the Mt. Wilson Solar Observatory, no. 26), Astrophysical Journal, 28 (1908) 100spa
dcterms.bibliographicCitationG. E. Hale, Preliminary results of an attempt to detect the general magnetic field of the Sun, The Astrophysical Journal 38 (1913) 27spa
dcterms.bibliographicCitationR. F. Stein, Solar surface magneto-convection, Living Reviews in Solar Physics 9 (2012) 1, https://doi.org/10. 12942/lrsp-2012-4.spa
dcterms.bibliographicCitationA. Vogler ¨ et al., Simulations of magneto-convection in the solar photosphere-Equations, methods, and results of the MURaM code, Astronomy & Astrophysics 429 (2005) 335, https: //doi.org/10.1051/0004-6361:20041507.spa
dcterms.bibliographicCitation. S. K. Solanki, Sunspots: An overview., Astronomy & Astrophysics Review 11 (2003) 4, https://doi.org/10.1007/ s00159-003-0018-4.spa
dcterms.bibliographicCitationM. Stix, The Sun’s differential rotation, In Reviews in Modern Astronomy 2 (Springer, 1989) pp. 248-266, https://doi. org/10.1007/978-3-642-75183-7 23spa
dcterms.bibliographicCitation. R. Arlt and J. M. Vaquero, Historical sunspot records, Living Reviews in Solar Physics 17 (2020) 1, https://doi.org/ 10.1007/s41116-020-0023-y.spa
dcterms.bibliographicCitationK. L. Harvey, The cyclic behavior of solar activity, In The solar cycle, 27 (1992) 335spa
dcterms.bibliographicCitationD. Sierra-Porta, Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23, Astrophysics and Space Science 363 (2018) 1, https: //doi.org/10.1007/s10509-018-3360-8spa
dcterms.bibliographicCitationD. Sierra-Porta, On the fractal properties of cosmic rays and Sun dynamics cross-correlations, Astrophysics and Space Science 367 (2022) 1, https://doi.org/10.1007/ s10509-022-04151-5.spa
dcterms.bibliographicCitation6. D. Sierra-Porta, M. Tarazona-Alvarado, and J. Villalba- Acebedo, Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling, Advances in Space Research (2023), https://doi.org/10. 1016/j.asr.2023.02.044.spa
dcterms.bibliographicCitationI. Sammis, F. Tang, and H. Zirin, The dependence of large flare occurrence on the magnetic structure of sunspots, The Astrophysical Journal 540 (2000) 583, https://doi.org/ 10.1086/309303.spa
dcterms.bibliographicCitationJ. M. Borrero and K. Ichimoto, Magnetic structure of sunspots, Living Reviews in Solar Physics 8 (2011) 1, https: //doi.org/10.12942/lrsp-2011-4.spa
dcterms.bibliographicCitationS. Tomczyk and E. Landi, Upgraded coronal multi-channel polarimeter (UCoMP), Solar Heliospheric and INterplanetary Environment (SHINE 2019) (2019) 131spa
dcterms.bibliographicCitationS. Tomczyk et al., First Images from the Upgraded Coronal Multi-channel Polarimeter (UCoMP), In AGU Fall Meeting Abstracts, 2021 (2021) 2089.spa
dcterms.bibliographicCitationM. P. Rast et al., Critical science plan for the Daniel K. Inouye solar telescope (DKIST), Solar Physics 296 (2021) 1, https: //doi.org/10.1007/s11207-021-01789-2.spa
dcterms.bibliographicCitationF. Woger ¨ et al., The Daniel K. Inouye Solar Telescope (DKIST)/Visible Broadband Imager (VBI), Solar Physics 296 (2021) 1, https://doi.org/10.1007/ s11207-021-01881-7spa
dcterms.bibliographicCitation. C. Rao, et al., 1.8-m solar telescope in China: Chinese large solar telescope, Journal of Astronomical Telescopes, Instruments, and Systems 1 (2015) 024001, https://doi.org/ 10.1117/1.JATIS.1.2.024001.spa
dcterms.bibliographicCitationR. Volkmer, et al., GREGOR: the new 1.5-m solar telescope on Tenerife, In Innovative Telescopes and Instrumentation for Solar Astrophysics, 4853 (2003) 60, https://doi.org/10. 1117/12.471367.spa
dcterms.bibliographicCitationO. Von Der Luhe, ¨ et al., GREGOR: a 1.5 m telescope for solar research, Astronomische Nachrichten: Astronomical Notes 4853 (2001) 353, https: //doi.org/10.1002/1521-3994(200112)322: 5/6%3C353::AID-ASNA353%3E3.0.CO;2-Z.spa
dcterms.bibliographicCitationY. Yan et al., The Chinese spectral radioheliograph-CSRH, Earth, Moon, and Planets 104 (2009) 97, https://doi. org/10.1007/s11038-008-9254-y.spa
dcterms.bibliographicCitationW. Wang et al., Calibration and data processing for a Chinese Spectral Radioheliograph in the decimeterwave range, Publications of the Astronomical Society of Japan 65 (2013), https://doi.org/10.1093/pasj/65.sp1.S18.spa
dcterms.bibliographicCitationA. Valio et al., POlarization Emission of Millimeter Activity at the Sun (POEMAS): new circular polarization solar telescopes at two millimeter wavelength ranges, Solar Physics 283 (2013) 651, https://doi.org/10.1007/ s11207-013-0237-4.spa
dcterms.bibliographicCitationT. J. Schmit et al., Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R, Journal of Applied Remote Sensing 7 (2013) 073462, https://doi.org/10.1117/1.JRS.7.073462.spa
dcterms.bibliographicCitationB. K. Dichter et al., Specification, design, and calibration of the space weather suite of instruments on the NOAA GOESR program spacecraft, IEEE Transactions on Nuclear Science 62 (2015) 2776, https:77doi.org/10.1109/TNS. 20152477997.spa
dcterms.bibliographicCitationK. Paularena and J. King, NASA’s IMP 8 spacecraft, In Interball in the ISTP Program, pp. 145-154, (Springer, 1999), https: //doi.org/10.1007/978-94-011-4487-2 11.spa
dcterms.bibliographicCitationV. Domingo, B. Fleck, and A. Poland, The scientific payload of the space-based Solar and Heliospheric Observatory (SOHO), Space Science Reviews 70 (1994) 7, https://doi. org/10.1007/BF00777835spa
dcterms.bibliographicCitation. V. Domingo, B. Fleck, and A. Poland, SOHO: the solar and heliospheric observatory, Space Science Reviews 72 (1995) 81, https://doi.org/10.1007/BF00768758spa
dcterms.bibliographicCitationD. Muller ¨ et al., The solar orbiter mission-science overview, Astronomy & Astrophysics 642 (2020) A1, https://doi. org/10.1051/0004-6361/202038467.spa
dcterms.bibliographicCitationA. W. Case et al., The solar probe cup on the Parker Solar Probe, The Astrophysical Journal Supplement Series 246 (2020) 43, https://doi.org/10.3847/1538-4365/ ab5a7b.spa
dcterms.bibliographicCitationJ. Halekas, et al., Electrons in the young solar wind: First results from the parker solar probe, The Astrophysical Journal Supplement Series 246 (2020) 22, https://doi.org/10. 3847/1538-4365/ab4cec.spa
dcterms.bibliographicCitationT. J. Immel, et al., The ionospheric connection explorer mission: Mission goals and design, Space Science Reviews 214 (2018) 1, https://doi.org/10.1007/ s11214-017-0449-2.spa
dcterms.bibliographicCitationR. Howard, P. Gilman, and P. Gilman, Rotation of the sun measured from Mount Wilson white-light images, The Astrophysical Journal 283 (1984) 373.spa
dcterms.bibliographicCitationE. Schroter, The solar differential rotation: present status of ob- ¨ servations, Solar Physics 100 (1985) 141.spa
dcterms.bibliographicCitationJ. G. Beck, A comparison of differential rotation measurements-(Invited Review), Solar physics 191 (2000) 47, https://doi.org/10.1023/A:1005226402796spa
dcterms.bibliographicCitationP. Scherrer, J. Wilcox, and L. Svalgaard, Rotation of the sun: observations at Stanford, Astrophys. J.; (United States) 241 (1980)spa
dcterms.bibliographicCitationR. Howard, J. E. Boyden, and B. J. Labonte, Solar rotation measurements at Mount Wilson: I. Analysis and instrumental effects, Solar Physics 66 (1980) 167.spa
dcterms.bibliographicCitationR. K. Ulrich et al., Solar rotation measurements at MountWilson: V. Reanalysis of 21 years of data, Solar Physics 117 (1988) 291.spa
dcterms.bibliographicCitation. J. Beck, T. Duvall Jr, and P. Scherrer, Long-lived giant cells detected at the surface of the Sun, Nature 394 (1998) 653.spa
dcterms.bibliographicCitationR. Ulrich, Identification of very large scale velocity structures on the solar surface using Mt Wilson synoptic observations, In Structure and Dynamics of the Interior of the Sun and Sun-like Stars, 418 (1998) 851.spa
dcterms.bibliographicCitation. D. A. Lamb, Measurements of solar differential rotation and meridional circulation from tracking of photospheric magnetic features, The Astrophysical Journal 836 (2017) 10, https: //doi.org/10.3847/1538-4357/836/1/10.spa
dcterms.bibliographicCitationB. Shneiderman, Science 2.0, Science 319 (2008) 1349spa
dcterms.bibliographicCitationT. Bucheler and J. H. Sieg, Understanding science 2.0: Crowd- ¨ sourcing and open innovation in the scientific method, Procedia Computer Science 7 (2011) 327, https://doi.org/10. 1016/j.procs.2011.09.014.spa
dcterms.bibliographicCitation. R. Bonney et al., Can citizen science enhance public understanding of science?, Public understanding of science 25 (2016) 2, https://doi.org/10.1177/0963662515607406.spa
dcterms.bibliographicCitationJ. P. Cohn, Citizen science: Can volunteers do real research?, BioScience 58 (2008) 192, https://doi.org/10.1641/ B580303.spa
dcterms.bibliographicCitationP. J. Marshall, C. J. Lintott, and L. N. Fletcher, Ideas for citizen science in astronomy, Annual Review of Astronomy and Astrophysics 53 (2015) 247.spa
dcterms.bibliographicCitationThe SunPy Community et al., The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package, The Astrophysical Journal 890 (2020) 68, https://doi.org/ 10.3847/1538-4357/ab4f7a.spa
dcterms.bibliographicCitation. J. Meeus, Astronomical algorithms, Richmond, VA:WillmannBell (1998).spa
dcterms.bibliographicCitationC. Rao et al., First light of the 1.8-m solar telescopeCLST (2020), https://doi.org/10.1007/ s11433-019-1557-3.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.31349/RevMexFis.20.020208
dc.subject.keywordsRotación diferencial del solspa
dc.subject.keywordsManchas solaresspa
dc.subject.keywordsDivulgación científicaspa
dc.subject.keywordsCiencia de datosspa
dc.subject.keywordsDifferential Sun’s rotationspa
dc.subject.keywordsSunspotsspa
dc.subject.keywordsScientific outreachspa
dc.subject.keywordsData sciencespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.