Mostrar el registro sencillo del ítem

dc.contributor.authorSoto-Acevedo, Misorly
dc.contributor.authorZuluaga Ortiz, Rohemi Alfredo
dc.contributor.authorDelahoz Domínguez, Enrique J.
dc.contributor.authorAbuchar Curi, Alfredo Miguel
dc.coverage.spatialColombia
dc.date.accessioned2023-09-05T19:21:36Z
dc.date.available2023-09-05T19:21:36Z
dc.date.issued2023-08
dc.date.submitted2023-09-05
dc.identifier.citationM. Soto-Acevedo, A. M. Abuchar-Curi, R. A. Zuluaga-Ortiz and E. J. Delahoz-Dominguez, "A machine learning model to predict standardized tests in engineering programs in Colombia," in IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, doi: 10.1109/RITA.2023.3301396.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12476
dc.description.abstractThis research develops a model to predict the results of Colombia’s national standardized test for Engineering programs. The research made it possible to forecast each student’s results and thus make decisions on reinforcement strategies to improve student performance. Therefore, a Learning Analytics approach based on three stages was developed: first, analysis and debugging of the database; second, multivariate analysis; and third, machine learning techniques. The results show an association between the performance levels in the Highschool test and the university test results. In addition, the machine learning algorithm that adequately fits the research problem is the Generalized Linear Network Model. For the training stage, the results of the model in Accuracy, AUC, Sensitivity, and Specificity were 0.810, 0.820, 0.813, and 0.827, respectively; in the evaluation stage, the results of the model in Accuracy, AUC, Sensitivity, and Specificity were 0.820, 0.820, 0.827 and 0.813 respectively.spa
dc.format.extent8 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceIEEE Revista Iberoamericana de Tecnologías del Aprendizajespa
dc.titleA machine learning model to predict standardized tests in engineering programs in Colombiaspa
dcterms.bibliographicCitationJ. Aparicio, S. Perelman, y D. Santín, «Comparing the evolution of productivity and performance gaps in education systems through DEA: an application to Latin American countries», Oper. Res., jun. 2020, doi: 10.1007/s12351-020-00578-2.spa
dcterms.bibliographicCitationD. Visbal-Cadavid, M. Martínez-Gómez, y F. Guijarro, «Assessing the efficiency of public universities through DEA. A case study», Sustainability, vol. 9, n.o 8, p. 1416, 2017.spa
dcterms.bibliographicCitationM. Campo, «Capital humano para el avance colombiano, Editorial en Educación superior 20». p. 1, 2012.spa
dcterms.bibliographicCitationL. Valencia, H. Trefftz, y I. Delgado-González, «Acreditación Internacional de Carreras de Ingeniería», Educ. En Ing., vol. 15, n.o 29, pp. 28-33, 2020.spa
dcterms.bibliographicCitationR. Hoyos Martínez, M. Borja Maturana, R. Gómez Lorduy, y G. Casadiegos Aponte, «Calidad en la escuela vs. prácticas pedagógicas: los relatos como medio para la reflexión y la emancipación de los maestros en tiempos de la eficiencia», Esfera, vol. 5, n.o 2, p. 16, 2015.spa
dcterms.bibliographicCitationJ. Guerrero, «La acreditación de alta calidad en Colombia», 2018.spa
dcterms.bibliographicCitationL. A. Sanabria James, M. C. Pérez Almagro, y L. E. Riascos Hinestroza, «Pruebas de evaluación Saber y PISA en la Educación Obligatoria de Colombia», Educ. Siglo XXI, vol. 38, n.o 3 Nov-Feb, pp. 231-254, 2020, doi: 10.6018/educatio.452891.spa
dcterms.bibliographicCitationL. A. Melo-Becerra, J. E. Ramos-Forero, y P. O. Hernández-Santamaría, «La educación superior en Colombia: situación actual y análisis de eficiencia», Desarro. Soc., vol. 2017, n.o 78, pp. 59-111, 2017, doi: 10.13043/DYS.78.2.spa
dcterms.bibliographicCitationY . Bernal y C. Rodríguez, «Factores que Inciden en el Rendimiento Escolar de los Estudiantes de la Educación Básica Secundaria», Universidad Cooperativa de Colombia, 2017.spa
dcterms.bibliographicCitationR. Timarán-Pereira, J. Caicedo-Zambrano, y A. Hidalgo-Troya, «Árboles de decisión para predecir factores asociados al desempeño académico de estudiantes de bachillerato en las pruebas Saber 11°», Rev. Investig. Desarro. E Innov., vol. 9, n.o 2, pp. 363-378, 2019, doi: 10.19053/20278306.v9.n2.2019.9184spa
dcterms.bibliographicCitationA. Pentel y L. L. Kaiva, «Predicting Students' State Examination Results based on Previous Grades and Demographics», 11th Int. Conf. Inf. Intell. Syst. Appl. IISA 2020, 2020, doi: 10.1109/IISA50023.2020.9284401.spa
dcterms.bibliographicCitationF. Yang y F. W. B. Li, «Study on student performance estimation, student progress analysis, and student potential prediction based on data mining», Comput. Educ., vol. 123, n.o April, pp. 97-108, 2018, doi: 10.1016/j.compedu.2018.04.006.spa
dcterms.bibliographicCitationS. Zhang, X. Li, M. Zong, X. Zhu, y R. Wang, «Efficient kNN Classification With Different Numbers of Nearest Neighbors», IEEE TransNeural Netw. Learn. Syst., vol. 29, n.o 5, pp. 1774-1785, may 2018, doi: 10.1109/TNNLS.2017.2673241.spa
dcterms.bibliographicCitationA. Moldagulova y R. Bte. Sulaiman, «Using KNN algorithm for classification of textual documents», en 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, may 2017, pp. 665- 671. doi: 10.1109/ICITECH.2017.8079924.spa
dcterms.bibliographicCitationP. K. Dunn y G. K. Smyth, «Chapter 5: Generalized Linear Models: Structure», en Generalized Linear Models With Examples in R, P. K. Dunn y G. K. Smyth, Eds. New York, NY: Springer, 2018, pp. 211-241. doi: 10.1007/978-1-4419-0118-7_5.spa
dcterms.bibliographicCitationD. Zhang, «A Coefficient of Determination for Generalized Linear Models», Am. Stat., vol. 71, n.o 4, pp. 310-316, oct. 2017, doi: 10.1080/00031305.2016.1256839.spa
dcterms.bibliographicCitationE. De La Hoz, R. Zuluaga, y A. Mendoza, «Assessing and Classification of Academic Efficiency in Engineering Teaching Programs», J. Effic. Responsib. Educ. Sci., vol. 14, n.o 1, Art. n.o 1, mar. 2021, doi: 10.7160/eriesj.2021.140104.spa
dcterms.bibliographicCitationG. Louppe, «Understanding Random Forests: From Theory to Practice», ArXiv14077502 Stat, jul. 2014, Accedido: 23 de julio de 2019. [En línea]. Disponible en: http://arxiv.org/abs/1407.7502spa
dcterms.bibliographicCitationS. Suthaharan, «Support Vector Machine», en Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning, S. Suthaharan, Ed. Boston, MA: Springer US, 2016, pp. 207-235. doi: 10.1007/978-1-4899-7641-3_9.spa
dcterms.bibliographicCitationD. Buzic y J. Dobsa, «Lyrics classification using Naive Bayes», en 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, may 2018, pp. 1011-1015. doi: 10.23919/MIPRO.2018.8400185.spa
dcterms.bibliographicCitationK. David Kolo, S. Adepoju, y J. Kolo Alhassan, «A Decision Tree Approach for Predicting Students Academic Performance», Int. J. Educ. Manag. Eng., vol. 5, n.o 5, pp. 12-19, oct. 2015, doi: 10.5815/ijeme.2015.05.02.spa
dcterms.bibliographicCitationT. Chen y C. Guestrin, «XGBoost: A Scalable Tree Boosting System», en Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '16, San Francisco, California, USA, 2016, pp. 785-794. doi: 10.1145/2939672.2939785.spa
dcterms.bibliographicCitationA. J. Hung, J. Chen, y I. S. Gill, «Automated Performance Metrics and Machine Learning Algorithms to Measure Surgeon Performance and Anticipate Clinical Outcomes in Robotic Surgery», JAMA Surg., vol. 153, n.o 8, p. 770, ago. 2018, doi: 10.1001/jamasurg.2018.1512.spa
dcterms.bibliographicCitationZ. H. Hoo, J. Candlish, y D. Teare, «What is an ROC curve?», Emerg. Med. J., vol. 34, n.o 6, pp. 357-359, jun. 2017, doi: 10.1136/emermed-2017-206735.spa
dcterms.bibliographicCitationD. Gašević, V. Kovanović, y S. Joksimović, «Piecing the learning analytics puzzle: a consolidated model of a field of research and practice», Learn. Res. Pract., vol. 3, n.o 1, pp. 63-78, 2017, doi: 10.1080/23735082.2017.1286142.spa
dcterms.bibliographicCitationR Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2013. Accedido: 15 de abril de 2020. [En línea]. Disponible en: http://www.polsci.wvu.edu/duval/PS603/Notes/R/fullrefman.pdfspa
dcterms.bibliographicCitationE. Delahoz-Dominguez, R. Zuluaga, y T. Fontalvo-Herrera, «Dataset of academic performance evolution for engineering students», Data Brief, vol. 30, p. 105537, jun. 2020, doi: 10.1016/j.dib.2020.105537.spa
dcterms.bibliographicCitationP. Herrera-Idárraga, E. López-Bazo, y E. Motellón, «Regional Wage Gaps, Education and Informality in an Emerging Country: The Case of Colombia», Spat. Econ. Anal., vol. 11, n.o 4, pp. 432-456, oct. 2016, doi: 10.1080/17421772.2016.1190462.spa
dcterms.bibliographicCitationJ. Moreno-Gómez, J. Calleja-Blanco, y G. Moreno-Gómez, «Measuring the efficiency of the Colombian higher education system: a two-stage approach», Int. J. Educ. Manag., vol. 34, n.o 4, pp. 794-804, ene. 2020, doi: 10.1108/IJEM-07-2019-0236.spa
dcterms.bibliographicCitationE. J. Delahoz-Dominguez, S. Guillen-Ibarra, T. Fontalvo-Herrera, E. J. Delahoz-Dominguez, S. Guillen-Ibarra, y T. Fontalvo-Herrera, «Análisis de la acreditación de calidad en programas de ingeniería industrial y los resultados en las pruebas nacionales estandarizadas, en Colombia», Form. Univ., vol. 13, n.o 1, pp. 127-134, feb. 2020, doi: 10.4067/S0718- 50062020000100127.spa
dcterms.bibliographicCitationP. Kaur, M. Singh, y G. S. Josan, «Classification and Prediction Based Data Mining Algorithms to Predict Slow Learners in Education Sector», Procedia Comput. Sci., vol. 57, pp. 500-508, 2015, doi: 10.1016/j.procs.2015.07.372.spa
dcterms.bibliographicCitationS. T. Jishan, R. I. Rashu, N. Haque, y R. M. Rahman, «Improving accuracy of students' final grade prediction model using optimal equal width binning and synthetic minority over-sampling technique», Decis. Anal., vol. 2, n.o 1, p. 1, dic. 2015, doi: 10.1186/s40165-014-0010-2.spa
dcterms.bibliographicCitationE. T. Lau, L. Sun, y Q. Yang, «Modelling, prediction and classification of student academic performance using artificial neural networks», SN Appl. Sci., vol. 1, n.o 9, p. 982, ago. 2019, doi: 10.1007/s42452-019-0884-7.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/RITA.2023.3301396
dc.subject.keywordsLearning Analyticsspa
dc.subject.keywordsMachine Learningspa
dc.subject.keywordsPredictive Evaluationspa
dc.subject.keywordsStandardized testsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.