Mostrar el registro sencillo del ítem
A machine learning model to predict standardized tests in engineering programs in Colombia
dc.contributor.author | Soto-Acevedo, Misorly | |
dc.contributor.author | Zuluaga Ortiz, Rohemi Alfredo | |
dc.contributor.author | Delahoz Domínguez, Enrique J. | |
dc.contributor.author | Abuchar Curi, Alfredo Miguel | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2023-09-05T19:21:36Z | |
dc.date.available | 2023-09-05T19:21:36Z | |
dc.date.issued | 2023-08 | |
dc.date.submitted | 2023-09-05 | |
dc.identifier.citation | M. Soto-Acevedo, A. M. Abuchar-Curi, R. A. Zuluaga-Ortiz and E. J. Delahoz-Dominguez, "A machine learning model to predict standardized tests in engineering programs in Colombia," in IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, doi: 10.1109/RITA.2023.3301396. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12476 | |
dc.description.abstract | This research develops a model to predict the results of Colombia’s national standardized test for Engineering programs. The research made it possible to forecast each student’s results and thus make decisions on reinforcement strategies to improve student performance. Therefore, a Learning Analytics approach based on three stages was developed: first, analysis and debugging of the database; second, multivariate analysis; and third, machine learning techniques. The results show an association between the performance levels in the Highschool test and the university test results. In addition, the machine learning algorithm that adequately fits the research problem is the Generalized Linear Network Model. For the training stage, the results of the model in Accuracy, AUC, Sensitivity, and Specificity were 0.810, 0.820, 0.813, and 0.827, respectively; in the evaluation stage, the results of the model in Accuracy, AUC, Sensitivity, and Specificity were 0.820, 0.820, 0.827 and 0.813 respectively. | spa |
dc.format.extent | 8 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | IEEE Revista Iberoamericana de Tecnologías del Aprendizaje | spa |
dc.title | A machine learning model to predict standardized tests in engineering programs in Colombia | spa |
dcterms.bibliographicCitation | J. Aparicio, S. Perelman, y D. Santín, «Comparing the evolution of productivity and performance gaps in education systems through DEA: an application to Latin American countries», Oper. Res., jun. 2020, doi: 10.1007/s12351-020-00578-2. | spa |
dcterms.bibliographicCitation | D. Visbal-Cadavid, M. Martínez-Gómez, y F. Guijarro, «Assessing the efficiency of public universities through DEA. A case study», Sustainability, vol. 9, n.o 8, p. 1416, 2017. | spa |
dcterms.bibliographicCitation | M. Campo, «Capital humano para el avance colombiano, Editorial en Educación superior 20». p. 1, 2012. | spa |
dcterms.bibliographicCitation | L. Valencia, H. Trefftz, y I. Delgado-González, «Acreditación Internacional de Carreras de Ingeniería», Educ. En Ing., vol. 15, n.o 29, pp. 28-33, 2020. | spa |
dcterms.bibliographicCitation | R. Hoyos Martínez, M. Borja Maturana, R. Gómez Lorduy, y G. Casadiegos Aponte, «Calidad en la escuela vs. prácticas pedagógicas: los relatos como medio para la reflexión y la emancipación de los maestros en tiempos de la eficiencia», Esfera, vol. 5, n.o 2, p. 16, 2015. | spa |
dcterms.bibliographicCitation | J. Guerrero, «La acreditación de alta calidad en Colombia», 2018. | spa |
dcterms.bibliographicCitation | L. A. Sanabria James, M. C. Pérez Almagro, y L. E. Riascos Hinestroza, «Pruebas de evaluación Saber y PISA en la Educación Obligatoria de Colombia», Educ. Siglo XXI, vol. 38, n.o 3 Nov-Feb, pp. 231-254, 2020, doi: 10.6018/educatio.452891. | spa |
dcterms.bibliographicCitation | L. A. Melo-Becerra, J. E. Ramos-Forero, y P. O. Hernández-Santamaría, «La educación superior en Colombia: situación actual y análisis de eficiencia», Desarro. Soc., vol. 2017, n.o 78, pp. 59-111, 2017, doi: 10.13043/DYS.78.2. | spa |
dcterms.bibliographicCitation | Y . Bernal y C. Rodríguez, «Factores que Inciden en el Rendimiento Escolar de los Estudiantes de la Educación Básica Secundaria», Universidad Cooperativa de Colombia, 2017. | spa |
dcterms.bibliographicCitation | R. Timarán-Pereira, J. Caicedo-Zambrano, y A. Hidalgo-Troya, «Árboles de decisión para predecir factores asociados al desempeño académico de estudiantes de bachillerato en las pruebas Saber 11°», Rev. Investig. Desarro. E Innov., vol. 9, n.o 2, pp. 363-378, 2019, doi: 10.19053/20278306.v9.n2.2019.9184 | spa |
dcterms.bibliographicCitation | A. Pentel y L. L. Kaiva, «Predicting Students' State Examination Results based on Previous Grades and Demographics», 11th Int. Conf. Inf. Intell. Syst. Appl. IISA 2020, 2020, doi: 10.1109/IISA50023.2020.9284401. | spa |
dcterms.bibliographicCitation | F. Yang y F. W. B. Li, «Study on student performance estimation, student progress analysis, and student potential prediction based on data mining», Comput. Educ., vol. 123, n.o April, pp. 97-108, 2018, doi: 10.1016/j.compedu.2018.04.006. | spa |
dcterms.bibliographicCitation | S. Zhang, X. Li, M. Zong, X. Zhu, y R. Wang, «Efficient kNN Classification With Different Numbers of Nearest Neighbors», IEEE TransNeural Netw. Learn. Syst., vol. 29, n.o 5, pp. 1774-1785, may 2018, doi: 10.1109/TNNLS.2017.2673241. | spa |
dcterms.bibliographicCitation | A. Moldagulova y R. Bte. Sulaiman, «Using KNN algorithm for classification of textual documents», en 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, may 2017, pp. 665- 671. doi: 10.1109/ICITECH.2017.8079924. | spa |
dcterms.bibliographicCitation | P. K. Dunn y G. K. Smyth, «Chapter 5: Generalized Linear Models: Structure», en Generalized Linear Models With Examples in R, P. K. Dunn y G. K. Smyth, Eds. New York, NY: Springer, 2018, pp. 211-241. doi: 10.1007/978-1-4419-0118-7_5. | spa |
dcterms.bibliographicCitation | D. Zhang, «A Coefficient of Determination for Generalized Linear Models», Am. Stat., vol. 71, n.o 4, pp. 310-316, oct. 2017, doi: 10.1080/00031305.2016.1256839. | spa |
dcterms.bibliographicCitation | E. De La Hoz, R. Zuluaga, y A. Mendoza, «Assessing and Classification of Academic Efficiency in Engineering Teaching Programs», J. Effic. Responsib. Educ. Sci., vol. 14, n.o 1, Art. n.o 1, mar. 2021, doi: 10.7160/eriesj.2021.140104. | spa |
dcterms.bibliographicCitation | G. Louppe, «Understanding Random Forests: From Theory to Practice», ArXiv14077502 Stat, jul. 2014, Accedido: 23 de julio de 2019. [En línea]. Disponible en: http://arxiv.org/abs/1407.7502 | spa |
dcterms.bibliographicCitation | S. Suthaharan, «Support Vector Machine», en Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning, S. Suthaharan, Ed. Boston, MA: Springer US, 2016, pp. 207-235. doi: 10.1007/978-1-4899-7641-3_9. | spa |
dcterms.bibliographicCitation | D. Buzic y J. Dobsa, «Lyrics classification using Naive Bayes», en 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, may 2018, pp. 1011-1015. doi: 10.23919/MIPRO.2018.8400185. | spa |
dcterms.bibliographicCitation | K. David Kolo, S. Adepoju, y J. Kolo Alhassan, «A Decision Tree Approach for Predicting Students Academic Performance», Int. J. Educ. Manag. Eng., vol. 5, n.o 5, pp. 12-19, oct. 2015, doi: 10.5815/ijeme.2015.05.02. | spa |
dcterms.bibliographicCitation | T. Chen y C. Guestrin, «XGBoost: A Scalable Tree Boosting System», en Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '16, San Francisco, California, USA, 2016, pp. 785-794. doi: 10.1145/2939672.2939785. | spa |
dcterms.bibliographicCitation | A. J. Hung, J. Chen, y I. S. Gill, «Automated Performance Metrics and Machine Learning Algorithms to Measure Surgeon Performance and Anticipate Clinical Outcomes in Robotic Surgery», JAMA Surg., vol. 153, n.o 8, p. 770, ago. 2018, doi: 10.1001/jamasurg.2018.1512. | spa |
dcterms.bibliographicCitation | Z. H. Hoo, J. Candlish, y D. Teare, «What is an ROC curve?», Emerg. Med. J., vol. 34, n.o 6, pp. 357-359, jun. 2017, doi: 10.1136/emermed-2017-206735. | spa |
dcterms.bibliographicCitation | D. Gašević, V. Kovanović, y S. Joksimović, «Piecing the learning analytics puzzle: a consolidated model of a field of research and practice», Learn. Res. Pract., vol. 3, n.o 1, pp. 63-78, 2017, doi: 10.1080/23735082.2017.1286142. | spa |
dcterms.bibliographicCitation | R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2013. Accedido: 15 de abril de 2020. [En línea]. Disponible en: http://www.polsci.wvu.edu/duval/PS603/Notes/R/fullrefman.pdf | spa |
dcterms.bibliographicCitation | E. Delahoz-Dominguez, R. Zuluaga, y T. Fontalvo-Herrera, «Dataset of academic performance evolution for engineering students», Data Brief, vol. 30, p. 105537, jun. 2020, doi: 10.1016/j.dib.2020.105537. | spa |
dcterms.bibliographicCitation | P. Herrera-Idárraga, E. López-Bazo, y E. Motellón, «Regional Wage Gaps, Education and Informality in an Emerging Country: The Case of Colombia», Spat. Econ. Anal., vol. 11, n.o 4, pp. 432-456, oct. 2016, doi: 10.1080/17421772.2016.1190462. | spa |
dcterms.bibliographicCitation | J. Moreno-Gómez, J. Calleja-Blanco, y G. Moreno-Gómez, «Measuring the efficiency of the Colombian higher education system: a two-stage approach», Int. J. Educ. Manag., vol. 34, n.o 4, pp. 794-804, ene. 2020, doi: 10.1108/IJEM-07-2019-0236. | spa |
dcterms.bibliographicCitation | E. J. Delahoz-Dominguez, S. Guillen-Ibarra, T. Fontalvo-Herrera, E. J. Delahoz-Dominguez, S. Guillen-Ibarra, y T. Fontalvo-Herrera, «Análisis de la acreditación de calidad en programas de ingeniería industrial y los resultados en las pruebas nacionales estandarizadas, en Colombia», Form. Univ., vol. 13, n.o 1, pp. 127-134, feb. 2020, doi: 10.4067/S0718- 50062020000100127. | spa |
dcterms.bibliographicCitation | P. Kaur, M. Singh, y G. S. Josan, «Classification and Prediction Based Data Mining Algorithms to Predict Slow Learners in Education Sector», Procedia Comput. Sci., vol. 57, pp. 500-508, 2015, doi: 10.1016/j.procs.2015.07.372. | spa |
dcterms.bibliographicCitation | S. T. Jishan, R. I. Rashu, N. Haque, y R. M. Rahman, «Improving accuracy of students' final grade prediction model using optimal equal width binning and synthetic minority over-sampling technique», Decis. Anal., vol. 2, n.o 1, p. 1, dic. 2015, doi: 10.1186/s40165-014-0010-2. | spa |
dcterms.bibliographicCitation | E. T. Lau, L. Sun, y Q. Yang, «Modelling, prediction and classification of student academic performance using artificial neural networks», SN Appl. Sci., vol. 1, n.o 9, p. 982, ago. 2019, doi: 10.1007/s42452-019-0884-7. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1109/RITA.2023.3301396 | |
dc.subject.keywords | Learning Analytics | spa |
dc.subject.keywords | Machine Learning | spa |
dc.subject.keywords | Predictive Evaluation | spa |
dc.subject.keywords | Standardized tests | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.