Mostrar el registro sencillo del ítem

dc.contributor.authorDalponte, Michele
dc.contributor.authorSolano-Correa, Yady Tatiana
dc.contributor.authorMarinelli, Daniele
dc.contributor.authorLiu, Sicong
dc.contributor.authorYokoya, Naoto
dc.contributor.authorGianelle, Damiano
dc.coverage.temporal2022-2023
dc.date.accessioned2023-09-05T19:20:55Z
dc.date.available2023-09-05T19:20:55Z
dc.date.issued2023-08-29
dc.date.submitted2023-09-04
dc.identifier.citationDalponte, M., Solano-Correa, Y. T., Marinelli, D., Liu, S., Yokoya, N., & Gianelle, D. (2023). Detection of forest windthrows with bitemporal COSMO-SkyMed and Sentinel-1 SAR data. Remote Sensing of Environment, 297, 113787. https://doi.org/10.1016/j.rse.2023.113787spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12475
dc.description.abstractWind represents a primary source of disturbances in forests, necessitating an assessment of the resulting damage to ensure appropriate forest management. Remote sensing, encompassing both active and passive techniques, offers a valuable and efficient approach for this purpose, enabling coverage of large areas while being cost-effective. Passive remote sensing data could be affected by the presence of clouds, unlike active systems such as Synthetic Aperture Radar (SAR) which are relatively less affected. Therefore, this study aims to explore the utilization of bitemporal SAR data for windthrow detection in mountainous regions. Specifically, we investigated how the detection outcomes vary based on three factors: i) the SAR wavelength (X-band or C-band), ii) the acquisition period of the pre- and post-event images (summer, autumn, or winter), and iii) the forest type (evergreen vs. deciduous). Our analysis considers two SAR satellite constellations: COSMO-SkyMed (band-X, with a pixel spacing of 2.5 m and 10 m) and Sentinel-1 (band-C, with a pixel spacing of 10 m). We focused on three study sites located in the Trentino-South Tyrol region of Italy, which experienced significant forest damage during the Vaia storm from 27th to 30th October 2018. To accomplish our objectives, we employed a detail-preserving, scale-driven approach for change detection in bitemporal SAR data. The results demonstrate that: i) the algorithm exhibits notably better performance when utilizing X-band data, achieving a highest kappa accuracy of 0.473 and a balanced accuracy of 76.1%; ii) the pixel spacing has an influence on the accuracy, with COSMO-SkyMed data achieving kappa values of 0.473 and 0.394 at pixel spacings of 2.5 m and 10 m, respectively; iii) the post-event image acquisition season significantly affects the algorithm's performance, with summer imagery yielding superior results compared to winter imagery; and iv) the forest type (evergreen vs. deciduous) has a noticeable impact on the results, particularly when considering autumn/winter data.spa
dc.format.extent17 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceRemote Sensing of Environmentspa
dc.titleDetection of forest windthrows with bitemporal COSMO-SkyMed and Sentinel-1 SAR dataspa
dcterms.bibliographicCitationAbdikan, S., Bayik, C., Sekertekin, A., Bektas Balcik, F., Karimzadeh, S., Matsuoka, M., Balik Sanli, F., 2022. Burned Area Detection Using Multi-Sensor SAR, Optical, and Thermal Data in Mediterranean Pine Forest. Forests 13, 347. https://doi.org/10.3390/f13020347spa
dcterms.bibliographicCitationAlbrecht, A., Hanewinkel, M., Bauhus, J., Kohnle, U., 2012. How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. European Journal of Forest Research 131, 229–247. https://doi.org/10.1007/s10342-010-0432-xspa
dcterms.bibliographicCitationBan, Y., Zhang, P., Nascetti, A., Bevington, A.R., Wulder, M.A., 2020. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci Rep 10, 1322. https://doi.org/10.1038/s41598-019-56967-xspa
dcterms.bibliographicCitationBelenguer-Plomer, M.A., Tanase, M.A., Chuvieco, E., Bovolo, F., 2021. CNN-based burned area mapping using radar and optical data. Remote Sensing of Environment 260, 112468. https://doi.org/10.1016/j.rse.2021.112468spa
dcterms.bibliographicCitationBernardi, M.S., Africa, P.C., de Falco, C., Formaggia, L., Menafoglio, A., Vantini, S., 2021. On the Use of Interferometric Synthetic Aperture Radar Data for Monitoring and Forecasting Natural Hazards. Math Geosci 53, 1781–1812. https://doi.org/10.1007/s11004-021-09948-8spa
dcterms.bibliographicCitationBovolo, F., Bruzzone, L., 2005. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sensing 43, 2963–2972. https://doi.org/10.1109/TGRS.2005.857987spa
dcterms.bibliographicCitationChen, H., Yokoya, N., Chini, M., 2023. Fourier domain structural relationship analysis for unsupervised multimodal change detection. ISPRS Journal of Photogrammetry and Remote Sensing 198, 99–114. https://doi.org/10.1016/j.isprsjprs.2023.03.004spa
dcterms.bibliographicCitationChen, H., Yokoya, N., Wu, C., Du, B., 2022. Unsupervised Multimodal Change Detection Based on Structural Relationship Graph Representation Learning. IEEE Trans. Geosci. Remote Sensing 60, 1–18. https://doi.org/10.1109/TGRS.2022.3229027spa
dcterms.bibliographicCitationChen, X., Sun, Q., Hu, J., 2018. Generation of Complete SAR Geometric Distortion Maps Based on DEM and Neighbor Gradient Algorithm. Applied Sciences 8, 2206. https://doi.org/10.3390/app8112206spa
dcterms.bibliographicCitationChirici, G., Giannetti, F., Travaglini, D., Nocentini, S., Francini, S., D’Amico, G., Calvo, E., Fasolini, D., Broll, M., Maistrelli, F., Tonner, J., Pietrogiovanna, M., Oberlechner, K., Andriolo, A., Comino, R., Faidiga, A., Pasutto, I., Carraro, G., Zen, S., Contarin, F., Alfonsi, L., Wolynski, A., Zanin, M., Gagliano, C., Tonolli, S., Zoanetti, R., Tonetti, R., Cavalli, R., Lingua, E., Pirotti, F., Grigolato, S., Bellingeri, D., Zini, E., Gianelle, D., Dalponte, M., Pompei, E., Stefani, A., Motta, R., Morresi, D., Garbarino, M., Alberti, G., Valdevit, F., Tomelleri, E., Torresani, M., Tonon, G., Marchi, M., Corona, P., Marchetti, M., 2019. Forest damage inventory after the “Vaia” storm in Italy. Forest@ - Rivista di Selvicoltura ed Ecologia Forestale 16, 3–9. https://doi.org/10.3832/efor3070-016spa
dcterms.bibliographicCitationCigna, F., Bateson, L.B., Jordan, C.J., Dashwood, C., 2014. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sensing of Environment 152, 441–466. https://doi.org/10.1016/j.rse.2014.06.025spa
dcterms.bibliographicCitationDalponte, M., Marzini, S., Solano-Correa, Y.T., Tonon, G., Vescovo, L., Gianelle, D., 2020. Mapping forest windthrows using high spatial resolution multispectral satellite images. International Journal of Applied Earth Observation and Geoinformation 93, 102206. https://doi.org/10.1016/j.jag.2020.102206spa
dcterms.bibliographicCitationDanklmayer, A., Doring, B.J., Schwerdt, M., Chandra, M., 2009. Assessment of Atmospheric Propagation Effects in SAR Images. IEEE Trans. Geosci. Remote Sensing 47, 3507–3518. https://doi.org/10.1109/TGRS.2009.2022271spa
dcterms.bibliographicCitationDeigele, W., Brandmeier, M., Straub, C., 2020. A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sensing 12, 2121. https://doi.org/10.3390/rs12132121spa
dcterms.bibliographicCitationDuan, F., Wan, Y., Deng, L., 2017. A Novel Approach for Coarse-to-Fine Windthrown Tree Extraction Based on Unmanned Aerial Vehicle Images. Remote Sensing 9, 306. https://doi.org/10.3390/rs9040306spa
dcterms.bibliographicCitationEinzmann, K., Immitzer, M., Böck, S., Bauer, O., Schmitt, A., Atzberger, C., 2017. Windthrow Detection in European Forests with Very High-Resolution Optical Data. Forests 8, 21. https://doi.org/10.3390/f8010021spa
dcterms.bibliographicCitationEriksson, L.E.B., Fransson, J.E.S., Soja, M.J., Santoro, M., 2012. Backscatter signatures of wind-thrown forest in satellite SAR images, in: 2012 IEEE International Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Munich, Germany, pp. 6435–6438. https://doi.org/10.1109/IGARSS.2012.6352732spa
dcterms.bibliographicCitationFransson, J.E.S., Walter, F., Blennow, K., Gustavsson, A., Ulander, L.M.H., 2002. Detection of storm-damaged forested areas using airborne CARABAS-II VHF SAR image data. IEEE Trans. Geosci. Remote Sensing 40, 2170–2175. https://doi.org/10.1109/TGRS.2002.804913spa
dcterms.bibliographicCitationGiovannini, L., Davolio, S., Zaramella, M., Zardi, D., Borga, M., 2021. Multi-model convection-resolving simulations of the October 2018 Vaia storm over Northeastern Italy. Atmospheric Research 253, 105455. https://doi.org/10.1016/j.atmosres.2021.105455spa
dcterms.bibliographicCitationGreen, R.M., 1998. The sensitivity of SAR backscatter to forest windthrow gaps. International Journal of Remote Sensing 19, 2419–2425. https://doi.org/10.1080/014311698214811spa
dcterms.bibliographicCitationHamdi, Z.M., Brandmeier, M., Straub, C., 2019. Forest Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data. Remote Sensing 11, 1976. https://doi.org/10.3390/rs11171976spa
dcterms.bibliographicCitationHe, P., Zhao, X., Shi, Y., Cai, L., 2021. Unsupervised Change Detection from Remotely Sensed Images Based on Multi-Scale Visual Saliency Coarse-to-Fine Fusion. Remote Sensing 13, 630. https://doi.org/10.3390/rs13040630spa
dcterms.bibliographicCitationHorch, A., Djemal, K., Gafour, A., Taleb, N., 2019. Supervised fusion approach of local features extracted from SAR images for detecting deforestation changes. IET Image Processing 13, 2866–2876. https://doi.org/10.1049/iet-ipr.2019.0122spa
dcterms.bibliographicCitationHosseini, M., Lim, S., 2023. Burned area detection using Sentinel-1 SAR data: A case study of Kangaroo Island, South Australia. Applied Geography 151, 102854. https://doi.org/10.1016/j.apgeog.2022.102854spa
dcterms.bibliographicCitationItalian Space Agency, 2019. COSMO-SkyMed Mission and Products Descriptionspa
dcterms.bibliographicCitationJalkanen, A., Mattila, U., 2000. Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. Forest Ecology and Management 135, 315–330. https://doi.org/10.1016/S0378-1127(00)00289-9spa
dcterms.bibliographicCitationJiang, X., Li, G., Liu, Y., Zhang, X.-P., He, Y., 2020. Change Detection in Heterogeneous Optical and SAR Remote Sensing Images Via Deep Homogeneous Feature Fusion. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 13, 1551–1566. https://doi.org/10.1109/JSTARS.2020.2983993spa
dcterms.bibliographicCitationJonikavičius, D., Mozgeris, G., 2013. Rapid assessment of wind storm-caused forest damage using satellite images and stand-wise forest inventory data. iForest - Biogeosciences and Forestry 6, 150–155. https://doi.org/10.3832/ifor0715-006spa
dcterms.bibliographicCitationKellndorfer, J.M., Pierce, L.E., Dobson, M.C., Ulaby, F.T., 1998. Toward consistent regional-to-global-scale vegetation characterization using orbital SAR systems. IEEE Trans. Geosci. Remote Sensing 36, 1396–1411. https://doi.org/10.1109/36.718844spa
dcterms.bibliographicCitationKislov, D.E., Korznikov, K.A., 2020. Automatic Windthrow Detection Using Very-High-Resolution Satellite Imagery and Deep Learning. Remote Sensing 12, 1145. https://doi.org/10.3390/rs12071145spa
dcterms.bibliographicCitationLazecky, M., Wadhwa, S., Mlcousek, M., Sousa, J.J., 2021. Simple method for identification of forest windthrows from Sentinel-1 SAR data incorporating PCA. Procedia Computer Science 181, 1154–1161. https://doi.org/10.1016/j.procs.2021.01.312spa
dcterms.bibliographicCitationLv, Z., Liu, T., Benediktsson, J.A., Falco, N., 2022. Land Cover Change Detection Techniques: Very-high-resolution optical images: A review. IEEE Geosci. Remote Sens. Mag. 10, 44–63. https://doi.org/10.1109/MGRS.2021.3088865spa
dcterms.bibliographicCitationMarin, C., Bovolo, F., Bruzzone, L., 2015. Building Change Detection in Multitemporal Very High Resolution SAR Images. IEEE Trans. Geosci. Remote Sensing 53, 2664–2682. https://doi.org/10.1109/TGRS.2014.2363548spa
dcterms.bibliographicCitationMitchell, S.J., 2013. Wind as a natural disturbance agent in forests: a synthesis. Forestry 86, 147–157. https://doi.org/10.1093/forestry/cps058spa
dcterms.bibliographicCitationMitchell, S.J., 2013. Wind as a natural disturbance agent in forests: a synthesis. Forestry 86, 147–157. https://doi.org/10.1093/forestry/cps058spa
dcterms.bibliographicCitationOtsu, N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst., Man, Cybern. 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076spa
dcterms.bibliographicCitationPatacca, M., Lindner, M., Lucas‐Borja, M.E., Cordonnier, T., Fidej, G., Gardiner, B., Hauf, Y., Jasinevičius, G., Labonne, S., Linkevičius, E., Mahnken, M., Milanovic, S., Nabuurs, G., Nagel, T.A., Nikinmaa, L., Panyatov, M., Bercak, R., Seidl, R., Ostrogović Sever, M.Z., Socha, J., Thom, D., Vuletic, D., Zudin, S., Schelhaas, M., 2023. Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology 29, 1359–1376. https://doi.org/10.1111/gcb.16531spa
dcterms.bibliographicCitationPirotti, F., Travaglini, D., Giannetti, F., Kutchartt, E., Bottalico, F., Chirici, G., 2016. Kernel feature cross-correlation for unsupervised quantification of damage from windthrow in forests. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7, 17–22. https://doi.org/10.5194/isprs-archives-XLI-B7-17-2016spa
dcterms.bibliographicCitationRich, R.L., Frelich, L., Reich, P.B., Bauer, M.E., 2010. Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution satellite imagery and field data. Remote Sensing of Environment 114, 299–308. https://doi.org/10.1016/j.rse.2009.09.005spa
dcterms.bibliographicCitationRüetschi, M., Schaepman, M., Small, D., 2017. Using Multitemporal Sentinel-1 C-band Backscatter to Monitor Phenology and Classify Deciduous and Coniferous Forests in Northern Switzerland. Remote Sensing 10, 55. https://doi.org/10.3390/rs10010055spa
dcterms.bibliographicCitationRüetschi, M., Small, D., Waser, L., 2019. Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sensing 11, 115. https://doi.org/10.3390/rs11020115spa
dcterms.bibliographicCitationSanginés de Cárcer, P., Mederski, P.S., Magagnotti, N., Spinelli, R., Engler, B., Seidl, R., Eriksson, A., Eggers, J., Bont, L.G., Schweier, J., 2021. The Management Response to Wind Disturbances in European Forests. Curr Forestry Rep 7, 167–180. https://doi.org/10.1007/s40725-021-00144-9spa
dcterms.bibliographicCitationSchelhaas, M.-J., 2008. Impacts of natural disturbances on the development of European forest resources: application of model approaches from tree and stand levels to large-scale scenarios. Dissertationes Forestales 2008. https://doi.org/10.14214/df.56spa
dcterms.bibliographicCitationSchellenberg, K., Jagdhuber, T., Zehner, M., Hese, S., Urban, M., Urbazaev, M., Hartmann, H., Schmullius, C., Dubois, C., 2023. Potential of Sentinel-1 SAR to Assess Damage in Drought-Affected Temperate Deciduous Broadleaf Forests. Remote Sensing 15, 1004. https://doi.org/10.3390/rs15041004spa
dcterms.bibliographicCitationSchwarz, M., Steinmeier, C., Holecz, F., Stebler, O., Wagner, H., 2003. Detection of Windthrow in Mountainous Regions with Different Remote Sensing Data and Classification Methods. Scandinavian Journal of Forest Research 18, 525–536. https://doi.org/10.1080/02827580310018023spa
dcterms.bibliographicCitationSeidl, R., Schelhaas, M.-J., Rammer, W., Verkerk, P.J., 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change 4, 806–810. https://doi.org/10.1038/nclimate2318spa
dcterms.bibliographicCitationServizio Foreste e Fauna - Provincia Autonoma di Trento, 2018. Stato d’attuazione del Piano d’azione per la gestione degli interventi di esbosco e ricostruzione dei boschi danneggiati dagli eventi eccezionali nei giorni dal 27 al 30 ottobre 2018 - 1° report 2018. Trento, Italy.spa
dcterms.bibliographicCitationSmall, D., Rohner, C., Miranda, N., Ruetschi, M., Schaepman, M.E., 2022. Wide-Area Analysis-Ready Radar Backscatter Composites. IEEE Trans. Geosci. Remote Sensing 60, 1–14. https://doi.org/10.1109/TGRS.2021.3055562spa
dcterms.bibliographicCitationSmall, D; Schuber, A., 2008. Guide to ASAR Geocodingspa
dcterms.bibliographicCitationSolano-Correa, Y.T., Bovolo, F., Bruzzone, L., 2019. An Approach to Multiple Change Detection in VHR Optical Images Based on Iterative Clustering and Adaptive Thresholding. IEEE Geoscience and Remote Sensing Letters 16, 1334–1338. https://doi.org/10.1109/LGRS.2019.2896385spa
dcterms.bibliographicCitationSun, Y., Lei, L., Guan, D., Kuang, G., Liu, L., 2022. Graph Signal Processing for Heterogeneous Change Detection. IEEE Trans. Geosci. Remote Sensing 60, 1–23. https://doi.org/10.1109/TGRS.2022.3221489spa
dcterms.bibliographicCitationTanase, M.A., Aponte, C., Mermoz, S., Bouvet, A., Le Toan, T., Heurich, M., 2018. Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sensing of Environment 209, 700–711. https://doi.org/10.1016/j.rse.2018.03.009spa
dcterms.bibliographicCitationTang, X., Zhang, H., Mou, L., Liu, F., Zhang, X., Zhu, X.X., Jiao, L., 2022. An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning. IEEE Trans. Geosci. Remote Sensing 60, 1–15. https://doi.org/10.1109/TGRS.2021.3106381spa
dcterms.bibliographicCitationThiele, A., Boldt, M., Hinz, S., 2012. Automated detection of storm damage in forest areas by analyzing TerraSAR-X data, in: 2012 IEEE International Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Munich, Germany, pp. 1672–1675. https://doi.org/10.1109/IGARSS.2012.6351205spa
dcterms.bibliographicCitationTomppo, E., Ronoud, G., Antropov, O., Hytönen, H., Praks, J., 2021. Detection of Forest Windstorm Damages with Multitemporal SAR Data—A Case Study: Finland. Remote Sensing 13, 383. https://doi.org/10.3390/rs13030383spa
dcterms.bibliographicCitationUdali, A., Lingua, E., Persson, H.J., 2021. Assessing Forest Type and Tree Species Classification Using Sentinel-1 C-Band SAR Data in Southern Sweden. Remote Sensing 13, 3237. https://doi.org/10.3390/rs13163237spa
dcterms.bibliographicCitationUlander, L.M.H., Smith, G., Eriksson, L., Folkesson, K., Fransson, J.E.S., Gustavsson, A., Hallberg, B., Joyce, S., Magnusson, M., Olsson, H., Persson, A., Walter, F., 2005. Mapping of wind-thrown forests in Southern Sweden using space- and airborne SAR, in: Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05. Presented at the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05., IEEE, Seoul, Korea, pp. 3619–3622. https://doi.org/10.1109/IGARSS.2005.1526631spa
dcterms.bibliographicCitationVaglio Laurin, G., Puletti, N., Tattoni, C., Ferrara, C., Pirotti, F., 2021. Estimated Biomass Loss Caused by the Vaia Windthrow in Northern Italy: Evaluation of Active and Passive Remote Sensing Options. Remote Sensing 13, 4924. https://doi.org/10.3390/rs13234924spa
dcterms.bibliographicCitationVorovencii, I., 2014. Detection of environmental changes due to windthrows using Landsat 7 ETM+ satellite images. Environmental Engineering and Management Journal 13, 565–576. https://doi.org/10.30638/eemj.2014.060spa
dcterms.bibliographicCitationWang, F., Xu, Y.J., 2010. Comparison of remote sensing change detection techniques for assessing hurricane damage to forests. Environmental Monitoring and Assessment 162, 311–326. https://doi.org/10.1007/s10661-009-0798-8spa
dcterms.bibliographicCitationWu, L., Wang, H., Li, Y., Guo, Z., Li, N., 2021. A Novel Method for Layover Detection in Mountainous Areas with SAR Images. Remote Sensing 13, 4882. https://doi.org/10.3390/rs13234882spa
dcterms.bibliographicCitationZoltán, L., Friedl, Z., Pacskó, V., Orbán, I., Tanács, E., Magyar, B., Kristóf, D., Standovár, T., 2021. Application of Sentinel-1 radar data for mapping ice disturbance in a forested area. European Journal of Remote Sensing 54, 569–588. https://doi.org/10.1080/22797254.2021.1982407spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1016/j.rse.2023.113787
dc.subject.keywordsSARspa
dc.subject.keywordsForestsspa
dc.subject.keywordsDisturbancesspa
dc.subject.keywordsWindthrowsspa
dc.subject.keywordsMultitemporal dataspa
dc.subject.keywordsChange detectionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.