Mostrar el registro sencillo del ítem
Improving Pump Characteristics through Double Curvature Impellers: Experimental Measurements and 3D CFD Analysis
dc.contributor.author | Coronado-Hernández, Oscar Enrique | |
dc.contributor.author | Useche, Jairo | |
dc.contributor.author | Abuchar-Soto, Verónica J | |
dc.contributor.author | Palencia-Díaz, Argemiro | |
dc.contributor.author | Paternina-Verona, Duban A | |
dc.contributor.author | Ramos, Helena M. | |
dc.contributor.author | Abuchar Curi, Alfredo Miguel | |
dc.date.accessioned | 2023-09-05T19:20:15Z | |
dc.date.available | 2023-09-05T19:20:15Z | |
dc.date.issued | 2023-07-27 | |
dc.date.submitted | 2023-09-04 | |
dc.identifier.citation | Abuchar-Curi, A.M.; Coronado-Hernández, O.E.; Useche, J.; Abuchar-Soto, V.J.; Palencia-Díaz, A.; Paternina-Verona, D.A.; Ramos, H.M. Improving Pump Characteristics through Double Curvature Impellers: Experimental Measurements and 3D CFD Analysis. Fluids 2023, 8, 217. https://doi.org/ 10.3390/fluids8080217 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12474 | |
dc.description.abstract | The outlet angle and shape of impeller blades are important parameters in centrifugal pump design. There is a lack of detailed studies related to double curvature impellers in centrifugal pumps in the current literature; therefore, an experimental and numerical analysis of double curvature impellers was performed. Six impellers were made and then assessed in a centrifugal pump test bed and simulated via 3D CFD simulation. The original impeller was also tested and simulated. One of the manufactured impellers had the same design as the original, and the other five impellers had a double curvature. Laboratory tests and simulations were conducted with three rotation speeds: 1400, 1700, and 1900 RPM. Head and performance curve equations were obtained for the pump–engine unit based on the flow of each impeller for the three rotation speeds. The results showed that a double curvature impeller improved pump head by approximately 1 m for the range of the study and performance by about 2% when compared to basic impeller. On the other hand, it was observed that turbulence models such as k-e and SST k-w reproduced similar physical and numerical results. | spa |
dc.format.extent | 26 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Fluids, Vol. 8 N° 8 (2023) | spa |
dc.title | Improving Pump Characteristics through Double Curvature Impellers: Experimental Measurements and 3D CFD Analysis | spa |
dcterms.bibliographicCitation | Patel, M.G.; Doshi, A.V. Effect of Impeller Blade Exit Angle on the Performance of Centrifugal Pump. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 702–706. | spa |
dcterms.bibliographicCitation | Tuzson, J. Centrifugal Pump Design; JohnWiley & Sons, Inc.: Hoboken, NJ, USA, 2000. | spa |
dcterms.bibliographicCitation | Gulich, J.F. Centrifugal Pumps, 2nd ed.; Springer: New York, NY, USA, 2010. | spa |
dcterms.bibliographicCitation | Srinivasan, K. Rotodynamic Pumps (Centrifugal and Axial); New Age International (P) Ltd.: Delhi, India, 2008. | spa |
dcterms.bibliographicCitation | Spence, R.; Amaral-Teixeira, J. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests. Comput. Fluids 2008, 37, 690–704 | spa |
dcterms.bibliographicCitation | Spence, R.; Amaral-Teixeira, J. A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump. Comput. Fluids 2009, 38, 1243–1257. | spa |
dcterms.bibliographicCitation | Fontanals, A.; Guardo, A.; Coussirat, M.; Egusquiza, E. Numerical Study of the Fluid—Structure Interaction in the Diffuser Passage of a Centrifugal Pump. In Proceedings of the IV International Conference on Computational Methods for Coupled Problems in Science and Engineering, Kos, Greece, 20–22 June 2011. | spa |
dcterms.bibliographicCitation | Savar, M.; Kozmar, H.; Sutlovi´c, I. Improving centrifugal pump efficiency by impeller trimming. Desalination 2009, 249, 654–659. | spa |
dcterms.bibliographicCitation | Barrio, R.; Fern’andez, J.; Blanco, E.; Parrondo, J. Estimation of radial load in centrifugal pumps using computational fluid dynamics. Eur. J. Mech. B/Fluids 2011, 30, 316–324 | spa |
dcterms.bibliographicCitation | Houlin, L.; Yong, W.; Shouqi, Y.; Minggao, T.A.N.; Kai, W. Effects of Blade Number on Characteristics of Centrifugal Pumps. Chin. J. Mech. Eng. 2010, 23, 742. | spa |
dcterms.bibliographicCitation | Li,W.-G. Influence of the Number of Impeller Blades on the Performance of Centrifugal Oil Pumps;World Pumps: Oxford, MS, USA, 2002. | spa |
dcterms.bibliographicCitation | Rababa, K.S. The Effect of Blades Number and Shape on the Operating Characteristics of Groundwater Centrifugal Pumps. Eur. J. Sci. Res. 2011, 52, 243–251 | spa |
dcterms.bibliographicCitation | Chakraborty, S.; Pandey, K.M. Numerical Studies on Effects of Blade Number Variations on Performance of Centrifugal Pumps at 4000 RPM. Int. J. Eng. Technol. 2011, 3, 410–416. | spa |
dcterms.bibliographicCitation | Pandey, K.M.; Singh, A.P.; Chakraborty, S.; Engineering, M.; Silchar, N.I.T. Numerical studies on effects of blade number variations on performance of centrifugal pumps at 2500 RPM. J. Environ. Res. Dev. 2012, 6, 863–868. | spa |
dcterms.bibliographicCitation | Sanda, B.; Daniela, C.V. The Influence of the Inlet Angle Over the Radial Impeller Geometry Design Approach with ANSYS. J. Eng. Stud. Res. 2012, 18, 32–39 | spa |
dcterms.bibliographicCitation | Luo, X.; Zhang, Y.; Peng, J.; Xu, H.; Yu, W. Impeller inlet geometry effect on performance improvement for centrifugal pumps. J. Mech. Sci. Technol. 2008, 22, 1971–1976. | spa |
dcterms.bibliographicCitation | Shojaeefard, M.; Tahani, M.; Ehghaghi, M.; Fallahian, M.; Beglari, M. Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid. Comput. Fluids 2012, 60, 61–70. | spa |
dcterms.bibliographicCitation | Bacharoudis, E.C.; Filios, A.E.; Mentzos, M.D.; Margaris, D.P. Parametric Study of a Centrifugal Pump Impeller by Varying the Outlet Blade Angle. Open Mech. Eng. J. 2008, 2, 75–83. | spa |
dcterms.bibliographicCitation | Al-Qutub, A.M.; Khalifa, A.E.; Al-Sulaiman, F.A. Exploring the Effect of V-Shaped Cut at Blade Exit of a Double Volute Centrifugal Pump. J. Press. Vessel. Technol. 2012, 134, 8 | spa |
dcterms.bibliographicCitation | Patil, P.M.; Patil, S.S.; Todkar, R.G. Design, Development and Testing of an Impeller of Open Well Submersible Pump for Performance Improvement. Int. J. Sci. Res. 2014, 3, 2670–2675. | spa |
dcterms.bibliographicCitation | Anagnostopoulos, J.S. A fast numerical method for flow analysis and blade design in centrifugal pump impellers. Comput. Fluids 2009, 38, 284–289 | spa |
dcterms.bibliographicCitation | Grapsas, V.A.; Anagnostopoulos, J.S.; Papantonis, D.E. Experimental and Numerical Study of a radial Flow Pump Impeller with 2D-Curved Blades. In Proceedings of the International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, 25–27 August 2007; pp. 175–180. | spa |
dcterms.bibliographicCitation | Zhou, W.; Zhao, Z.; Lee, T.S.; Winoto, S.H. Investigation of Flow Through Centrifugal Pump Impellers Using Computational Fluid Dynamics. Int. J. Rotating Mach. 2003, 9, 49–61. | spa |
dcterms.bibliographicCitation | Yang, M.G.; Liu, D.; Gu, H.F.; Kang, C.; Li, H. Analysis of Turbulent Flow in the Impeller of a Chemical Pump. J. Eng. Sci. Technol. 2007, 2, 218–225. | spa |
dcterms.bibliographicCitation | Shvindin, A.I.; Ivanyushin, A.A. Operation of centrifugal pumps in off-design conditions. Chem. Pet. Eng. 2009, 45, 148–151. | spa |
dcterms.bibliographicCitation | Cheah, K.W.; Lee, T.S.;Winoto, S.H.; Zhao, Z.M. Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions. Int. J. Rotating Mach. 2007, 2007, 083641. | spa |
dcterms.bibliographicCitation | Barrio, R.; Parrondo, J.; Blanco, E. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points. Comput. Fluids 2010, 39, 859–870. | spa |
dcterms.bibliographicCitation | Ozturk, A.; Aydin, K.; Sahin, B.; Pinarbasi, A. Effect of impeller-diffuser radial gap ratio in a centrifugal pump. JSIR 2009, 68, 203–213. | spa |
dcterms.bibliographicCitation | Gupta, M.; Kumar, S.; Kumar, A. Numerical Study of Pressure and Velocity Distribution Analysis of Centrifugal Pump. Int. J. Therm. Technol. 2011, 1, 114–118. | spa |
dcterms.bibliographicCitation | Asuaje, M.; Bakir, F.; Kouidri, S.; Kenyery, F.; Rey, R. Numerical Modelization of the Flow in Centrifugal Pump: Volute Influence in Velocity and Pressure Fields. Int. J. Rotating Mach. 2005, 2005, 244–255. | spa |
dcterms.bibliographicCitation | Esfahani, J.A.; Moghadam, B.J.; Nouri, M.; Mahmoudi, A. Numerical and parametric study of a centrifugal pump. In Proceedings of the International Conference on Advances in Mechanical and Robotics Engineering—MRE 2014, Kuala Lumpur, Malaysia, 8–9 March 2014; pp. 35–39. | spa |
dcterms.bibliographicCitation | Kulkarni, S.S. Parametric Study of Centrifugal Pump and its Performance Analysis using CFD. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 155–161. | spa |
dcterms.bibliographicCitation | Shojaeefard, M.H.; Boyaghchi, F.A.; Ehghaghi, M.B. Experimental Study and Three-Dimensional Numerical Flow Simulation in a Centrifugal Pump when Handling Viscous Fluids. IUST Int. J. Eng. Sci. 2006, 17, 53–60. | spa |
dcterms.bibliographicCitation | Fard, M.H.S.; Boyaghchi, F.A. Studies on the Influence of Various Blade Outlet Angles in a Centrifugal Pump when Handling Viscous Fluids. Am. J. Appl. Sci. 2007, 4, 718. | spa |
dcterms.bibliographicCitation | Pagalthivarthi, K.V.; Gupta, P.K.; Tyagi, V.; Ravi, M.R. CFD Predictions of Dense Slurry Flow in Centrifugal Pump Casings. Int. J. Aerosp. Mech. Eng. 2011, 5, 254–266. | spa |
dcterms.bibliographicCitation | Gölcü, M.; Pancar, Y. Investigation of Performance Characteristics in a Pump Impeller with Low Blade Discharge Angle;World Pumps: Oxford, MS, USA, 2005. | spa |
dcterms.bibliographicCitation | Baoling, C.; Zuchao, Z.; Jianci, Z.; Ying, C. The Flow Simulation and Experimental Study of Low Specific-Speed High-speed Complex Centrifugal Impellers. Chin. J. Mech. Eng. 2006, 14, 435–441. | spa |
dcterms.bibliographicCitation | Kaya, D.; Yagmur, E.A.; Yigit, K.S.; Kilic, F.C.; Eren, A.S.; Celik, C. Energy efficiency in pumps. Energy Convers. Manag. 2008, 49, 1662–1673 | spa |
dcterms.bibliographicCitation | Yedidiah, S. A Study in the Use of CFD in the Design of Centrifugal Pumps. Eng. Appl. Comput. Fluid Mech. 2008, 2, 331–343. | spa |
dcterms.bibliographicCitation | Wu, K.-H.; Lin, B.-J.; Hung, C.-I. Novel Design of Centrifugal Pump Impellers Using Generated Machining Method and CFD. Eng. Appl. Comput. Fluid Mech. 2008, 2, 195–207 | spa |
dcterms.bibliographicCitation | Bachus, L. ADHD and NPSH; World Pumps: Oxford, MS, USA, 2005; pp. 26–29. | spa |
dcterms.bibliographicCitation | Abbas, M.K. Cavitation in centrifugal pumps. Diyala J. Eng. Sci. 2010, 170–180. | spa |
dcterms.bibliographicCitation | Cˇ erneticˇ, J.; Cˇ udina, M. Cavitation Noise Phenomena in Centrifugal Pumps. In Proceedings of the 5th Congress of Alps-Adria Acoustics Association, Petrcane, Croatia, 12–14 September 2012; pp. 1–6. | spa |
dcterms.bibliographicCitation | Budea, S.; Ciocanea, A. The Influence of the Suction Vortex Over the NPSH Available of Centrifugal Pumps. U.P.B. Sci. Bull. 2008, 70, 1–10. | spa |
dcterms.bibliographicCitation | Shah, S.R.; Jain, S.V.; Patel, R.N.; Lakhera, V.J. CFD for centrifugal pumps: A review of the state-of-the-art. Procedia Eng. 2013, 51, 715–720 | spa |
dcterms.bibliographicCitation | Cherkasski, V. Pumps, Fans, Compressors; MIRED: Moscow, Russia, 1980. | spa |
dcterms.bibliographicCitation | Ke, Q.; Tang, L.; Luo, W.; Cao, J. Parameter Optimization of Centrifugal Pump Splitter Blades with Artificial Fish Swarm Algorithm. Water 2023, 15, 1806 | spa |
dcterms.bibliographicCitation | Hu, J.; Li, K.; Su, W.; Zhao, X. Numerical Simulation of Drilling Fluid Flow in Centrifugal Pumps. Water 2023, 15, 992. | spa |
dcterms.bibliographicCitation | PTC 8.2-1990; Centrifugal Pumps. ASME: New York, NY, USA, 1990. | spa |
dcterms.bibliographicCitation | Greenshields, C.;Weller, H. Notes on Computational Fluid Dynamics: General Principles; CFD Direct Ltd.: Reading, UK, 2022. | spa |
dcterms.bibliographicCitation | Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion; Imperial College of Science and Technology, Department of Mechanical Engineering; Elsevier: London, UK, 1983; pp. 96–116. | spa |
dcterms.bibliographicCitation | Liu, H.L.; Liu, M.M.; Dong, L.; Ren, Y.; Du, H. Effects of computational grids and turbulence models on numerical simulation of centrifugal pump with CFD. IOP Conf. Ser. Earth Environ. Sci. 2012, 15, 062005. | spa |
dcterms.bibliographicCitation | Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. | spa |
dcterms.bibliographicCitation | Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 2009, 23, 305–316 | spa |
dcterms.bibliographicCitation | Kaewnai, S.; Chamaoot, M.; Wongwises, S. Predicting performance of radial flow type impeller of centrifugal pump using CFD. J. Mech. Sci. Technol. 2009, 23, 1620–1627 | spa |
dcterms.bibliographicCitation | Chima, R.; Liou, M.S. Comparison of the AUSM+ and H-CUSP Schemes for Turbomachinery Applications. In Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, USA, 23–26 June 2003; p. 4120. | spa |
dcterms.bibliographicCitation | Wu, J.; Shimmei, K.; Tani, K.; Niikura, K.; Sato, J. CFD-based design optimization for hydro turbines. J. Fluids Eng. 2007, 129, 159–168 | spa |
dcterms.bibliographicCitation | Mott, R.L. Applied Fluid Mechanics, 6th ed.; Pearson Education: London, UK, 2016. | spa |
dcterms.bibliographicCitation | Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; LWW: Philadelphia, PA, USA, 2012. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/fluids8080217 | |
dc.subject.keywords | Centrifugal pump | spa |
dc.subject.keywords | CFD | spa |
dc.subject.keywords | Impeller | spa |
dc.subject.keywords | Double curvature | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.