Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Fernández, Joaquin
dc.contributor.authorCano, Heidi
dc.contributor.authorAldas, Miguel
dc.date.accessioned2023-09-05T19:19:40Z
dc.date.available2023-09-05T19:19:40Z
dc.date.issued2022-09-19
dc.date.submitted2023-09-02
dc.identifier.citationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. https://doi.org/10.3390/polym14183910spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12473
dc.description.abstractSulfur compounds are removed from propylene through purification processes. However, these processes are not 100% effective, so low concentrations of compounds such as H2S may be present in polymer-grade propylene. This article studies the effects of H2S content on polypropylene polymerization through the controlled dosage of this compound with concentrations between 0.07 and 5 ppm and its monitoring during the process to determine possible reaction mechanisms and evaluate variations in properties of the material by TGA, FTIR, MFI, and XDR analysis. It was found that the fluidity index increases directly proportional to the concentration of H2S. In addition, the thermo oxidative degradation is explained by means of the proposed reaction mechanisms of the active center of the Ziegler–Natta catalyst with the H2S molecule and the formation of substances with functional groups such as alcohol, ketones, aldehydes, CO, and CO2 by the oxidation of radical complexes. This study shows for the first time a reaction mechanism between the active center formed for polymerization and H2S, in addition to showing how trace impurities in the raw materials can affect the process, highlighting the importance of optimizing the processes of removal and purification of polymer-grade materialsspa
dc.format.extent11 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourcePolymers, Vol. 14 N° 18 (2022)spa
dc.titleImpact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylenespa
dcterms.bibliographicCitationKurahashi, E.; Wada, T.; Nagai, T.; Chammingkwan, P.; Terano, M.; Taniike, T. Synthesis of Polypropylene Functionalized with a Trace Amount of Reactive Functional Groups and Its Utilization in Graft-Type Nanocomposites. Polymer 2018, 158, 46–52.spa
dcterms.bibliographicCitationKarol, F.J.; Jacobson, F.I. Catalysis and the Unipol Process. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1986; Volume 25.spa
dcterms.bibliographicCitationMier, J.; Artiaga, R.; García Soto, L. Síntesis de Polímeros. Pesos Moleculares. Conformación y Configuración. In Elementos Estructurales con Materiales Polímeros: Ferrol; Universidade, Servicio de Publicacións: A Coruña, Spain, 1997; pp. 11–48.spa
dcterms.bibliographicCitationBailar, J.C.; Emeléus, H.J.; Nyholm, R.; Trotman-Dickenson, A.F. Comprehensive Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1973; Volume 3, ISBN 9781483283135.spa
dcterms.bibliographicCitationNikolaeva, M.; Mikenas, T.; Matsko, M.; Zakharov, V. Effect of AlEt3 and an External Donor on the Distribution of Active Sites According to Their Stereospecificity in Propylene Polymerization over TiCl4/MgCl2 Catalysts with Different Titanium Content. Macromol. Chem. Phys. 2016, 217, 1384–1395.spa
dcterms.bibliographicCitationNikolaevna Panchenko, V.; Viktorovna Vorontsova, L.; Aleksandrovich Zakharov, V. Ziegler-Natta Catalysts for Propylene Polymerization—Interaction of an External Donor with the Catalyst. Polyolefins J. 2017, 4, 87–97spa
dcterms.bibliographicCitationVizen, E.I.; Rishina, L.A.; Sosnovskaja, L.N.; Dyachkovsky, F.S.; Dubnikova, I.L.; Ladygina, T.A. Study of Hydrogen Effect in Propylene Polymerization on (with) the MgCl2 -Supported Ziegler-Natta Catalyst-Part 2. Effect of CS2 on Polymerization Centres. Eur. Polym. J. 1994, 30, 1315–1318spa
dcterms.bibliographicCitationKallio, K.; Wartmann, A.; Reichert, K.-H. Reactivation of a Poisoned Metallocene Catalyst by Irradiation with Visible Light; Wiley: Hoboken, NJ, USA, 2002; Volume 23spa
dcterms.bibliographicCitationBahri-Laleh, N. Interaction of Different Poisons with MgCl2/TiCl4 Based Ziegler-Natta Catalysts. Appl. Surf. Sci. 2016, 379, 395–401.spa
dcterms.bibliographicCitationAsynkiewicz, S.P. Reactions of Organoaluminium Compounds with Electron Donors. Pure Appl. Chem. 1972, 30, 509–522.spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of Oxygenates, Sulphides, Thiols and Permanent Gases in Propylene. A Multiple Linear Regression Model to Predict the Loss of Efficiency in Polypropylene Production on an Industrial Scale. J. Chromatogr. A 2020, 1628, 461478spa
dcterms.bibliographicCitationLi, Z.; Yin, Y.; Wang, X.; Tu, D.M.; Kao, K.C. Formation and Inhibition of Free Radicals in Electrically Stressed and Aged Insulating Polymers. J. Appl. Polym. Sci. 2003, 89, 3416–3425spa
dcterms.bibliographicCitationBiswal, H.S. Hydrogen Bonds Involving Sulfur: New Insights from Ab Initio Calculations and Gas Phase Laser Spectroscopy. In Challenges and Advances in Computational Chemistry and Physics; Springer: Berlin/Heidelberg, Germany, 2015; Volume 19, pp. 15–45, ISBN 9783319141633spa
dcterms.bibliographicCitationKaushik, R.; Ghosh, A.; Amilan Jose, D. Recent Progress in Hydrogen Sulphide (H2S) Sensors by Metal Displacement Approach. Coord. Chem. Rev. 2017, 347, 141–157spa
dcterms.bibliographicCitation. Zhang, J.; Li, X. Hydrogen Bonding in the Complexes Formed by Arsine and H-X Molecules: A Theoretical Study. Chem. Phys. Lett. 2019, 735, 136767spa
dcterms.bibliographicCitationBarnabas, F.A. Solution Reactions of HX Molecules (X = SH, CI, Br) With Dinuclear Palladium(I) Complexes Containing Bis(Diphenylphosphino)Methane; University of British Columbia: Vancouver, BC, Canada, 1989.spa
dcterms.bibliographicCitationPluth, M.D.; Tonzetich, Z.J. Hydrosulfide Complexes of the Transition Elements: Diverse Roles in Bioinorganic, Cluster, Coordination, and Organometallic Chemistry. Chem. Soc. Rev. 2020, 49, 4070–4134.spa
dcterms.bibliographicCitationLivingstone, S.E. Metal Complexes of Ligands Containing Sulphur, Selenium, or Tellurium as Donor Atoms. Q. Rev. Chem. Soc. 1965, 19, 386.spa
dcterms.bibliographicCitationLindoy, L.F. Reactions Involving Metal Complexes of Sulphur Ligands. Coord. Chem. Rev. 1969, 4, 41–71.spa
dcterms.bibliographicCitation. Enríquez Rodríguez, M. Funcionalización de Ligandos Coordinados; Universidad de Coruña: A Coruña, Spain, 2017.spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of Arsine and Phosphine in Industrial Atmospheric Emissions in Spain and Colombia. Implementation of Modified Zeolites to Reduce the Environmental Impact of Emissions. Atmos. Pollut. Res. 2021, 12, 167–176.spa
dcterms.bibliographicCitationMensforth, E.J.; Hill, M.R.; Batten, S.R. Coordination Polymers of Sulphur-Donor Ligands. Inorganica. Chim. Acta 2013, 403, 9–24.spa
dcterms.bibliographicCitationJafarinejad, S. Control and Treatment of Sulfur Compounds Specially Sulfur Oxides (SOx) Emissions from the Petroleum Industry: A Review. Chem. Int. 2016, 2, 242–253spa
dcterms.bibliographicCitationShi, Q.; Wu, J. Review on Sulfur Compounds in Petroleum and Its Products: State-of-the-Art and Perspectives. Energy Fuels 2021, 35, 14445–14461.spa
dcterms.bibliographicCitationZhang, L.L.; Wang, C.L.; Zhao, Y.S.; Yang, G.H.; Su, M.; Yang, C.H. Speciation and Quantification of Sulfur Compounds in Petroleum Asphaltenes by Derivative XANES Spectra. J. Fuel Chem. Technol. 2013, 41, 1328–1335spa
dcterms.bibliographicCitationHan, Y.; Zhang, Y.; Xu, C.; Hsu, C.S. Molecular Characterization of Sulfur-Containing Compounds in Petroleum. Fuel 2018, 221, 144–158spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L. Quantification of Poisons for Ziegler Natta Catalysts and Effects on the Production of Polypropylene by Gas Chromatographic with Simultaneous Detection: Pulsed Discharge Helium Ionization, Mass Spectrometry and Flame Ionization. J. Chromatogr. A 2020, 1614, 460736.spa
dcterms.bibliographicCitationvan Krevelen, D.W.; te Nijenhuis, K. Typology of Properties. In Properties of Polymers; Elsevier: Amsterdam, The Netherlands, 2009; pp. 49–67spa
dcterms.bibliographicCitationHalasa, A.F.; Massie, J.M.; Ceresa, R.J. The Chemical Modification of Polymers. In The Science and Technology of Rubber; Academic Press: Cambridge, MA, USA, 2013; pp. 517–546spa
dcterms.bibliographicCitationSoroush, M.; Grady, M.C. Polymers, Polymerization Reactions, and Computational Quantum Chemistry. In Computational Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–16spa
dcterms.bibliographicCitationChong, B.Y.K.; Krstina, J.; Le, T.P.T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S.H. Thiocarbonylthio Compounds [S=C(Ph)S-R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules 2003, 36, 2256–2272spa
dcterms.bibliographicCitationShen, X.R.; Fu, Z.S.; Hu, J.; Wang, Q.; Fan, Z.Q. Mechanism of Propylene Polymerization with MgCl2 -Supported Ziegler-Natta Catalysts Based on Counting of Active Centers: The Role of External Electron Donor. J. Phys. Chem. C 2013, 117, 15174–15182spa
dcterms.bibliographicCitationOtsu, T.; Matsumoto, A. Controlled Synthesis of Polymers Using the Iniferter Technique: Developments in Living Radical Polymerization. In Microencapsulation Microgels Iniferters; Springer: Berlin/Heidelberg, Germany, 1998; pp. 75–137.spa
dcterms.bibliographicCitationHernández-Fernandez, J.; Rodríguez, E. Determination of Phenolic Antioxidants Additives in Industrial Wastewater from Polypropylene Production Using Solid Phase Extraction with High-Performance Liquid Chromatography. J. Chromatogr. A 2019, 1607, 460442spa
dcterms.bibliographicCitation5. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and Elimination of Substituted Synthetic Phenols and Volatile Organic Compounds in the Wastewater Treatment Plant during the Production of Industrial Scale Polypropylene. Chemosphere 2021, 263, 128027.spa
dcterms.bibliographicCitationHernández-Fernández, J.; López-Martínez, J. Experimental Study of the Auto-Catalytic Effect of Triethylaluminum and TiCl4 Residuals at the Onset of Non-Additive Polypropylene Degradation and Their Impact on Thermo-Oxidative Degradation and Pyrolysis. J. Anal. Appl. Pyrolysis. 2021, 155, 105052spa
dcterms.bibliographicCitationZhang, S.; Li, B.; Lin, M.; Li, Q.; Gao, S.; Yi, W. Effect of a Novel Phosphorus-Containing Compound on the Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Polypropylene. J. Appl. Polym. Sci. 2011, 122, 3430–3439.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379.spa
dcterms.bibliographicCitation. Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. Available online: https://www.astm.org/ d1238-10.html (accessed on 28 August 2022)spa
dcterms.bibliographicCitationBremner, T.; Rudin, A.; Cook, D.G. Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics. J. Appl. Polym. Sci. 1990, 41, 1617–1627.spa
dcterms.bibliographicCitationIvin, K.J.; Rooney, J.J.; Stewart, C.D.; Green, M.L.H.; Mahtab, R. Mechanism for the Stereospecific Polymerization of Olefins by Ziegler–Natta Catalysts. J. Chem. Soc. Chem. Commun. 1978, 14, 604–606spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123.spa
dcterms.bibliographicCitationPadilla Paz, R.M. Síntesis y Estudio de Cpmplejos Organometálicos de Iridio Con N-Aril-4,5-Dimetilen-1,3-Oxazolidin-2-Onas y Complejos de Cobre Con Furoiltioureas; Universidad Autónoma del estado de Hidalgo: Hidalgo, Mexico, 2006spa
dcterms.bibliographicCitationEguren, L.; Korswagen, R. Catalizadores Ziegler-Natta Utilizados Para Polimerizar Propileno y Etileno. Revista de Química 1987, 1, 5–13spa
dcterms.bibliographicCitationNATTA, G.; PASQUON, I.; GIACHETTI, E. Kinetics of the Stereospecific Polymerization of Polypropylene to Isotactic Polymers. In Stereoregular Polymers and Stereospecific Polymerizations; Elsevier: Amsterdam, The Netherlands, 1967spa
dcterms.bibliographicCitationZakharov, I.I.; Zakharov, V.A.; Zhidomirov, G.M. Quantum Chemical Studies of Propene, Ethylene, Acetylene and Dihydrogen Reactivity in the Insertion Reaction into the Titanium-Alkyl Bond; Wiley: Hoboken, NJ, USA, 1996; Volume 5.spa
dcterms.bibliographicCitationCheremisinoff, N.P. Handbook of Polymer Science and Technology: Synthesis and Properties; Dekker, M., Ed.; Routledge: London, UK, 1989spa
dcterms.bibliographicCitationChien, J.C.W.; Bres, P. Magnesium Chloride Supported High Mileage Catalysts for Olefin Polymerization. XIII. Effect of External Lewis Base on Ethylene Polymerization. J. Polym. Sci. A Polym. Chem. 1986, 24, 1967–1988spa
dcterms.bibliographicCitationBhaduri, S.; Mukhopadhyay, S.; Kulkarni, S.A. Role of Titanium Oxidation States in Polymerization Activity of Ziegler-Natta Catalyst: A Density Functional Study. J. Organomet. Chem. 2006, 691, 2810–2820.spa
dcterms.bibliographicCitationClough, R.L. Isotopic Exchange in Gamma-irradiated Mixtures of C24H50 and C24D50: Evidence of Free Radical Migration in the Solid State. J. Chem. Phys. 1987, 87, 1588spa
dcterms.bibliographicCitationBahlouli, N.; Pessey, D.; Raveyre, C.; Guillet, J.; Ahzi, S.; Dahoun, A.; Hiver, J.M. Recycling Effects on the Rheological and Thermomechanical Properties of Polypropylene-Based Composites. Mater. Des. 2012, 33, 451–458.spa
dcterms.bibliographicCitationAurrekoetxea, J.; Sarrionandia, M.A.; Urrutibeascoa, I.; Maspoch, M.L. Effects of Recycling on the Microstructure and the Mechanical Properties of Isotactic Polypropylene. J. Mater. Sci. 2001, 36, 2607–2613.spa
dcterms.bibliographicCitationAlvarado Chacon, F.; Brouwer, M.T.; Thoden van Velzen, E.U.; Smeding, I.W. A First Assessment of the Impact of Impurities in PP and PE Recycled Plastics; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2020.spa
dcterms.bibliographicCitation. Sheng, B.-R.; Li, B.; Xie, B.-H.; Yang, W.; Feng, J.-M.; Yang, M.-B. Influences of Molecular Weight and Crystalline Structure on Fracture Behavior of Controlled-Rheology-Polypropylene Prepared by Reactive Extrusion. Polym. Degrad. Stab. 2008, 93, 225–232.spa
dcterms.bibliographicCitationDusseault, J.J.A.; Hsu, C.C. MgCI2 -Supported Ziegler-Natta Catalysts for Olefin Polymerization: Basic Structure, Mechanism, and Kinetic Behavior. J. Macromol. Sci. Part C 2006, 33, 103–145.spa
dcterms.bibliographicCitationKissin, Y.V.; Marin, V.P.; Nelson, P.J. Propylene Polymerization Reactions with Supported Ziegler–Natta Catalysts: Observing Polymer Material Produced by a Single Active Center. J. Polym. Sci. A Polym. Chem. 2017, 55, 3832–3841spa
dcterms.bibliographicCitationNoristi, L.; Marchetti, E.; Baruzzi, G.; Sgarzi, P. Investigation on the Particle Growth Mechanism in Propylene Polymerization with MgCl2 -Supported Ziegler–Natta Catalysts. J. Polym. Sci. A Polym. Chem. 1994, 32, 3047–3059.spa
dcterms.bibliographicCitationAshfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ula ´nski, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877.spa
dcterms.bibliographicCitationBhanu, V.A.; Kishore, K. Role of Oxygen in Polymerization Reactions. Chem. Rev. 1991, 91, 99–117.spa
dcterms.bibliographicCitationNewby, T.E. Study of Spontaneous Polymerisation Inhibition. Ph.D. Thesis, University of York, York, UK, 2014.spa
dcterms.bibliographicCitationGeorge, A.; Harper, P. Melt Flow Index Determination in Polymer Process Control. GB9803894.6, 25 February 1998.spa
dcterms.bibliographicCitationRichaud, E.; Fayolle, B.; Davies, P. Tensile Properties of Polypropylene Fibers. In Handbook of Properties of Textile and Technical Fibres; Elsevier: Amsterdam, The Netherlands, 2018; pp. 515–543.spa
dcterms.bibliographicCitationLitvinov, V.M.; Ries, M.E.; Baughman, T.W.; Henke, A.; Matloka, P.P. Chain Entanglements in Polyethylene Melts. Why Is It Studied Again? Macromolecules 2013, 46, 541–547spa
dcterms.bibliographicCitationMontaudo, G.; Puglisi, C. Thermal Degradation Mechanisms in Condensation Polymers. In Developments in Polymer Degradation— 7; Springer: Dordrecht, The Netherlands, 1987; pp. 35–80.spa
dcterms.bibliographicCitationCommereuc, S.; Vaillant, D.; Philippart, J.L.; Lacoste, J.; Lemaire, J.; Carlsson, D.J. Photo and Thermal Decomposition of IPP Hydroperoxides. Polym. Degrad. Stab. 1997, 57, 175–182.spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L.-M. Autocatalytic Influence of Different Levels of Arsine on the Thermal Stability and Pyrolysis of Polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/polym14183910
dc.subject.keywordsHydrogen sulfidespa
dc.subject.keywordsLigandsspa
dc.subject.keywordsPolypropylenespa
dc.subject.keywordsCatalystspa
dc.subject.keywordsDegradationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.