Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Fernández, Joaquin
dc.contributor.authorGuerra, Yoleima
dc.contributor.authorPuello-Polo, Esneyder
dc.contributor.authorMarquez, Edgar
dc.date.accessioned2023-09-05T19:19:02Z
dc.date.available2023-09-05T19:19:02Z
dc.date.issued2022-07-31
dc.date.submitted2023-09-02
dc.identifier.citationHernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Márquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. https://doi.org/10.3390/polym14153123spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12472
dc.description.abstractThis article studies the effects of arsine on the synthesis and thermal degradation of 4 sam ples of virgin polypropylene (PP-virgin) and proposes reaction mechanisms that allow understanding of its behaviour. Different points are monitored during the polypropylene synthesis to perform TGA, DSC, FT-IR, RDX, and MFI analyses later. The content of AsH3 in polypropylene varies between 0.05 and 4.73 ppm, and of arsenic in virgin PP residues between 0.001 and 4.32 ppm for PP0 and PP10, increasing in fluidity index from 3.0 to 24.51. The origin of thermo-oxidative degradation is explained by the reaction mechanisms of the Molecule AsH3 with the active titanium center of the ZN catalyst and the subsequent oxidation to form radical complexes. OO-AsH-TiCl4 -MgCl2 and (OO-as-OO)2 -TiCl4 -MgCl2 , which, by radical reactions, give rise to the formation of functional groups aldehyde, ketone, alcohol, carboxylic acid, CO, CO2 , PP-Polyol, PP-Polyether, and PP-Isopropylethers. These species caused the TG and DTG curves to increase degradation peaks in pp samplesspa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourcePolymers, Vol. 14 N° 15 (2022)spa
dc.titleEffects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylenespa
dcterms.bibliographicCitationQuinteros, J.G. Sintesis y Aplicaciones de Ligandos Arsinas. Estudios de Sistemas Catalíticos de Pd y Au; Universidad Nacional de Córdoba: Córdoba, Spain, 2016.spa
dcterms.bibliographicCitationGras, R.; Luong, J.; Hawryluk, M.; Monagle, M. Analysis of part-per-billion level of arsine and phosphine in light hydrocarbons by capillary flow technology and dielectric barrier discharge detector. J. Chromatogr. A 2010, 1217, 348–352.spa
dcterms.bibliographicCitationZhang, J.; Li, X. Hydrogen bonding in the complexes formed by arsine and H-X molecules: A theoretical study. Chem. Phys. Lett. 2019, 735, 136767spa
dcterms.bibliographicCitationBurt, J.; Levason, W.; Reid, G. Coordination chemistry of the main group elements with phosphine, arsine and stibine ligands. Coord. Chem. Rev. 2014, 260, 65–115spa
dcterms.bibliographicCitationGreen, J. Transition Metals in the Synthesis of Complex Organic Molecules. J. Am. Chem. Soc. 2010, 132, 1443spa
dcterms.bibliographicCitationOrpen, A.G.; Connelly, N.G. Structural systematics: The role of PA. sigma.* orbitals in metal-phosphorus .pi.-bonding in redox-related pairs of M-PA3 complexes (A = R, Ar, OR; R = alkyl). Organometallics 1990, 9, 1206–1210spa
dcterms.bibliographicCitationCrabtree, R.H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014spa
dcterms.bibliographicCitationMcCleverty, J.A.; Meyer, T.J. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology. J. Am. Chem. Soc. 2004, 126.spa
dcterms.bibliographicCitationTreichel, P.M. Phosphine, Arsine, and Stibine Complexes of the Transition Elementes; Elsevier Scientific Publishing Co.: Amsterdam, The Netherlands, 1979; Volume 9spa
dcterms.bibliographicCitationWilkinson, G.; Gillard, R.D.; McCleverty, J.A. Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds; Pergamon Press: Oxford, UK, 1987; Available online: https://inis.iaea.org/search/search. aspx?orig_q=RN:19039703 (accessed on 1 November 2021).spa
dcterms.bibliographicCitationRodríguez, M.E. Funcionalización de Ligandos Coordinados; Universidad de Coruña: Coruña, Spain, 2017spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmos. Pollut. Res. 2021, 12, 167–176.spa
dcterms.bibliographicCitationCarrizo, D.S. Estudios Computacionales en Catálisis Homogénea con Metales de Transición: Reacción de Stille, Activación de Enlaces C-H y β-Eliminación; Universidad Nacional de Córdoba: Córdoba, Spain, 2016.spa
dcterms.bibliographicCitationArlinghaus, R.T.; Andrews, L. Infrared spectra of the PH3, AsH3, and SbH 3-HX hydrogen bonded complexes in solid argon J. Chem. Phys. 1984, 81, 4341–4351.spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736spa
dcterms.bibliographicCitation. Kurahashi, E.; Wada, T.; Nagai, T.; Chammingkwan, P.; Terano, M.; Taniike, T. Synthesis of polypropylene functionalized with a trace amount of reactive functional groups and its utilization in graft-type nanocomposites. Polymer 2018, 158, 46–52.spa
dcterms.bibliographicCitation7. Karol, F.J.; Jacobson, F.I. Catalysis and the Unipol Process. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1986; Volume 25spa
dcterms.bibliographicCitationMier, J.; Artiaga, R.; Soto, L.G. Síntesis de Polímeros. Pesos moleculares. Conformación y configuración. Elementos Estructurales con Materiales Polímeros: Ferrol; Universidad de Coruña: Coruña, Spain, 1997; pp. 11–48.spa
dcterms.bibliographicCitationBailar, J.C.; Emeléus, H.J.; Nyholm, R.; Trotman-Dickenson, A.F. Comprehensive Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1973; Volume 3spa
dcterms.bibliographicCitationNikolaeva, M.; Mikenas, T.; Matsko, M.; Zakharov, V. Effect of AlEt3 and an External Donor on the Distribution of Active Sites According to Their Stereospecificity in Propylene Polymerization over TiCl4/MgCl2 Catalysts with Different Titanium Content. Macromol. Chem. Phys. 2016, 217, 1384–1395spa
dcterms.bibliographicCitationPanchenko, V.N.; Vorontsova, L.V.; Zakharov, V.A. Ziegler-Natta catalysts for propylene polymerization—Interaction of an external donor with the catalyst. Polyolefins J. 2017, 4, 87–97spa
dcterms.bibliographicCitationVizen, E.I.; Rishina, L.A.; Sosnovskaja, L.N.; Dyachkovsky, F.S.; Dubnikova, I.L.; Ladygina, T.A. Study of hydrogen effect in propylene polymerization on (with) the MgC12- Supported Ziegler-Natta catalyst-Part 2. Effect of Cs2 on polymerization centres. Eur. Polym. J 1994, 30, 1315–1318.spa
dcterms.bibliographicCitationKallio, K.; Wartmann, A.; Reichert, K.-H. Reactivation of a Poisoned Metallocene Catalyst by Irradiation with Visible Light. Macromol. Rapid Commun. 2002, 23, 187–190.spa
dcterms.bibliographicCitationBahri-Laleh, N. Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl. Surf. Sci. 2016, 379, 395–401.spa
dcterms.bibliographicCitationAsynkiewicz, S.P. Reactions of organoaluminium compounds with electron donors. Pure Appl. Chem. 1972, 30, 509–522.spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478.spa
dcterms.bibliographicCitationLi, Z.; Yin, Y.; Wang, X.; Tu, D.M.; Kao, K.C. Formation and inhibition of free radicals in electrically stressed and aged insulating polymers. J. Appl. Polym. Sci. 2003, 89, 3416–3425spa
dcterms.bibliographicCitationCavallo, L.; Del Piero, S.; Ducéré, J.M.; Fedele, R.; Melchior, A.; Morini, G.; Piemontesi, F.; Tolazzi, M. Key interactions in heterogeneous Ziegler-Natta catalytic systems: Structure and energetics of TiCL4-lewis base complexes. J. Phys. Chem. C 2007, 111, 4412–4419spa
dcterms.bibliographicCitationBahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Mirmohammadi, S.A. A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler-Natta catalyst. J. Organomet. Chem. 2012, 719, 74–79spa
dcterms.bibliographicCitationCorrea, A.; Bahri-Laleh, N.; Cavallo, L. How well can DFT reproduce key interactions in Ziegler-Natta systems? Macromol. Chem. Phys. 2013, 214, 1980–1989spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385.spa
dcterms.bibliographicCitationArshouee, G.H.; Zarand, S.M.G. Determination of Catalyst Residence Time, Heat Generation, and Monomer Conversion via Process Variables during Propylene Polymerization by a Mathematical Model. Theor. Found. Chem. Eng. 2021, 55, 140–152.spa
dcterms.bibliographicCitationHernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027spa
dcterms.bibliographicCitationHernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052spa
dcterms.bibliographicCitationZhang, S.; Li, B.; Lin, M.; Li, Q.; Gao, S.; Yi, W. Effect of a novel phosphorus-containing compound on the flame retardancy and thermal degradation of intumescent flame retardant polypropylene. J. Appl. Polym. Sci. 2011, 122, 3430–3439.spa
dcterms.bibliographicCitation. Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379spa
dcterms.bibliographicCitationBremner, T.; Rudin, A.; Cook, D.G. Melt flow index values and molecular weight distributions of commercial thermoplastics. J. Appl. Polym. Sci. 1990, 41, 1617–1627.spa
dcterms.bibliographicCitationIvin, K.J.; Rooney, J.J.; Stewart, C.D.; Green, M.L.H.; Mahtab, R. Mechanism for the stereospecific polymerization of olefins by Ziegler–Natta catalysts. J. Chem. Soc. Chem. Commun. 1978, 14, 604–606.spa
dcterms.bibliographicCitationPadilla Paz, R.M. Síntesis y Estudio de Cpmplejos Organometálicos de Iridio con N-Aril-4,5-dimetilen-1,3-oxazolidin-2-onas y Complejos de Cobre con Furoiltioureas; Universidad Autónoma del estado de Hidalgo: Hidalgo, Mexico, 2006spa
dcterms.bibliographicCitationCastro, C.A.; Eguren, L.; Korswagen, R.P. Catalizadores Ziegler-Natta utilizados para polimerizar propileno y etileno. Rev. De Química 1987, 1, 5–13.spa
dcterms.bibliographicCitation. Natta, G.; Pasquon, I.; Giachetti, E. Kinetics of the stereospecific polymerization of polypropylene to isotactic polymers. In Stereoregular Polymers and Stereospecific Polymerizations; Elsevier: Amsterdam, The Netherlands, 1967.spa
dcterms.bibliographicCitationChien, J.C.W.; Bres, P. Magnesium Chloride Supported High Mileage Catalysts for Olefin Polymerization. XIII. Effect of External Lewis Base on Ethylene Polymerization. J. Polym. Sci. Part A Polym. Chem. 1986, 24, 1967–1988spa
dcterms.bibliographicCitationBhaduri, S.; Mukhopadhyay, S.; Kulkarni, S.A. Role of titanium oxidation states in polymerization activity of Ziegler-Natta catalyst: A density functional study. J. Organomet. Chem. 2006, 691, 2810–2820.spa
dcterms.bibliographicCitationMukhopadhyay, S.; Kulkarni, S.A.; Bhaduri, S. Density functional study on the role of electron donors in propylene polymerization using Ziegler-Natta catalyst. J. Organomet. Chem. 2005, 690, 1356–1365.spa
dcterms.bibliographicCitationJensen, V.R.; Borve, K.J.; Ystenesg, M. Ziegler-Natta Ethylene Insertion Reaction for a Five-Coordinate Titanium Chloride Complex Bridged to an Aluminum Hydride Cocatalyst. J. Am. Chem. Soc. 1995, 117, 4109–4117spa
dcterms.bibliographicCitationZakharov, I.I.; Zakharov, V.A.; Zhidomirov, G.M. Quantum chemical studies of propene, ethylene, acetylene and dihydrogen reactivity in the insertion reaction into the titanium-alkyl bond. Macromol. Theory Simul. 1996, 5, 837–843.spa
dcterms.bibliographicCitationCavallo, L.; Guerra, G.; Corradini, P. Mechanisms of Propagation and Termination Reactions in Classical Heterogeneous Ziegler−Natta Catalytic Systems: A Nonlocal Density Functional Study. J. Am. Chem. Soc. 1998, 120, 2428–2436spa
dcterms.bibliographicCitation9. Cheremisinoff, N.P. Handbook of Polymer Science and Technology: Synthesis and Properties; John Wiley & Sons Ltd.: London, UK, 1989.spa
dcterms.bibliographicCitationGordy, W. A Relation between Bond Force Constants, Bond Orders, Bond Lengths, and the Electronegativities of the Bonded Atoms. J. Chem. Phys. 1946, 14, 305–320spa
dcterms.bibliographicCitationMyneni, S.C.B.; Traina, S.J.; Waychunas, G.A.; Logan, T.J. Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim. Cosmochim. Acta 1998, 62, 3499–3514.spa
dcterms.bibliographicCitation. Mowery, D.M.; Assink, R.A.; Derzon, D.K.; Klamo, S.B.; Clough, R.L.; Bernstein, R. Solid-State 13C NMR Investigation of the Oxidative Degradation of Selectively Labeled Polypropylene by Thermal Aging and γ-Irradiation. Macromolecules 2005, 38, 5035–5046spa
dcterms.bibliographicCitationHamid, S.H. Handbook of Polymer Degradation, 2nd ed.; Marcel Dekker: New York, NY, USA, 2000.spa
dcterms.bibliographicCitationCarlsson, D.J.; Wiles, D.M. The Photooxidative Degradation of Polypropylene. Part I. Photooxidation and Photoinitiation Processes. J. Macromol. Sci. Part C Polym. Rev. 1976, 14, 65–106spa
dcterms.bibliographicCitationRangaraj, V.M.; Singh, S.; Devaraju, S.; Wadi, V.S.; Alhassan, S.; Anjum, D.H.; Mittal, V. Polypropylene/phosphazene nanotube nanocomposites: Thermal, mechanical, and flame retardation studies. J. Appl. Polym. Sci. 2020, 137, 49525spa
dcterms.bibliographicCitationKurt, G.; Kasgoz, A. Effects of molecular weight and molecular weight distribution on creep properties of polypropylene homopolymer. J. Appl. Polym. Sci. 2021, 138, 50722.spa
dcterms.bibliographicCitationSchoolenberg, G.E.; Vink, P. Ultra-violet degradation of polypropylene: 1. Degradation profile and thickness of the embrittled surface layer. Polymer 1991, 32, 432–437spa
dcterms.bibliographicCitationRouillon, C.; Bussiere, P.O.; Desnoux, E.; Collin, S.; Vial, C.; Therias, S.; Gardette, J.L. Is carbonyl index a quantitative probe to monitor polypropylene photodegradation? Polym. Degrad. Stab. 2016, 128, 200–208spa
dcterms.bibliographicCitationZhang, T.; Chen, K.; Zhang, Z.; Shi, R. Quantitative relationship between melting peak temperature and carbonyl index of polypropylene during UV aging based on date fitting. IOP Conf. Ser. Mater. Sci. Eng. 2018, 322, 022016spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/polym14153123
dc.subject.keywordsArsinespa
dc.subject.keywordsLigandsspa
dc.subject.keywordsPolypropylenespa
dc.subject.keywordsCatalystspa
dc.subject.keywordsDegradationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.