Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Fernández, Joaquin
dc.contributor.authorOrtega-Toro, Rodrigo
dc.contributor.authorGonzález-Cuello, Rafael
dc.date.accessioned2023-09-05T19:17:35Z
dc.date.available2023-09-05T19:17:35Z
dc.date.issued2023-09-01
dc.date.submitted2023-09-02
dc.identifier.citationHernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reaction. Polymers 2023, 15, 3619. https://doi.org/10.3390/polym15173619spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12470
dc.description.abstractPolypropylene synthesis is a critical process in the plastics industry, where control of catalytic activity is essential to ensure the quality and performance of the final product. In this study, the effect of two inhibitors, propanol and arsine, on the properties of synthesized polypropylene was investigated. Experiments were conducted using a conventional catalyst to polymerize propylene, and different concentrations of propanol and arsine were incorporated into the process. The results revealed that the addition of propanol led to a significant decrease in the Melt Flow Index (MFI) of the resulting polypropylene. The reduction in the MFI was most notable at a concentration of 62.33 ppm propanol, suggesting that propanol acts as an effective inhibitor by slowing down the polymerization rate and thus reducing the fluidity of the molten polypropylene. On the other hand, introducing arsine as an inhibitor increased the MFI of polypropylene. The maximum increase in the MFI was observed at a concentration of 0.035 ppm arsine. This suggests that small amounts of arsine affect the MFI and Mw of the produced PP. Regarding the catalyst productivity, it was found that as the concentration of propanol in the sample increased (approximately seven ppm), there was a decrease in productivity from 45 TM/kg to 44 TM/kg. Starting from 10 ppm, productivity continued to decline, reaching its lowest point at 52 ppm, with only 35 MT/kg. In the case of arsine, changes in catalyst productivity were observed at lower concentrations than with propanol. Starting from about 0.006 ppm, productivity decreased, reaching 39 MT/kg at a concentration of 0.024 ppm and further decreasing to 36 TM/kg with 0.0036 ppm. Computational analysis supported the experimental findings, indicating that arsine adsorbs more stably to the catalyst with an energy of −60.8 Kcal/mol, compared to propanol (−46.17 Kcal/mol) and isobutyl (−33.13 Kcal/mol). Analyses of HOMO and LUMO orbitals, as well as reactivity descriptors, such as electronegativity, chemical potential, and nucleophilicity, shed light on the potential interactions and chemical reactions involving inhibitors. Generated maps of molecular electrostatic potential (MEP) illustrated the charge distribution within the studied molecules, further contributing to the understanding of their reactivity. The computational results supported the experimental findings and provided additional information on the molecular interactions between the inhibitors and the catalyst, shedding light on the possible modes of inhibition. Solubles in xylene values indicate that both propanol and arsine affect the polymer’s morphology, which may have significant implications for its properties and final applications.spa
dc.format.extent25 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourcePolymers, Vol. 15 N° 17 (2023)spa
dc.titleParts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactiospa
dcterms.bibliographicCitationShamiri, A.; Chakrabarti, M.H.; Jahan, S.; Hussain, M.A.; Kaminsky, W.; Aravind, P.V.; Yehye, W.A. The Influence of Ziegler-Natta and Metallocene Catalysts on Polyolefin Structure, Properties, and Processing Ability. Materials 2014, 7, 5069–5108.spa
dcterms.bibliographicCitation. Igin, K.J.; Rooney, J.J.; Stewart, C.D.; Green, M.L.; Mahtab, R. Mecanismo para la polimerización estereoespecífica de olefinas por catalizadores Ziegler—Natta. Revista de la Sociedad Química. Comun. Químicas 1978, 14, 604–606spa
dcterms.bibliographicCitationMulhaupt, R. Catálisis de polimerización catalítica y post polimerización cincuenta años después del descubrimiento de los catalizadores de Ziegler. Macromol. Chem. Phys. 2003, 204, 289–327spa
dcterms.bibliographicCitationTangjituabun, K.; Kim, S.Y.; Hiraoka, Y.; Taniike, T.; Terano, M.; Jongsomjit, B.; Praserthdam, P. Effects of various poisoning compounds on the activity and stereospecificity of heterogeneous Ziegler–Natta catalyst. Sci. Technol. Adv. Mater. 2008, 9, 024402spa
dcterms.bibliographicCitationSoga, K.; Sano, T.; Yamamoto, K.; Shiono, T. The role of additives on the im-provement of the isotacticity of polypropylene—A possible interpretation. Chem. Lett. 2006, 11, 425–428.spa
dcterms.bibliographicCitationQuirk, R.P. Transition metal catalyzed polymerizations: Alkenes and dienes. In Proceedings of the Eleventh Midland Macromolecular Meeting, Midland, MI, USA, 17–21 August 1981; Quirk, R.P., Ed.; MMI Press by Harwood Academic Publishers: Chur, Switzerland, 1900.spa
dcterms.bibliographicCitationSacchi, M.; Tritto, I.; Locatelli, P. The function of amines in conventional and supported Ziegler-Natta catalysts. Eur. Polym. J. 1988, 24, 137–140spa
dcterms.bibliographicCitationTritto, I.; Sacchi, M.C.; Locatelli, P.; Zannoni, G. 13C NMR Investigation of the Interactions between Amines and Ziegler-Natta Catalysts for α-Olefin Polymerization. Macromolecules 1988, 21, 384–387spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2019, 1614, 460736spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148spa
dcterms.bibliographicCitationKratochvíla, J.; Mejzlík, J. Retardation of the TiCl3 ·1/3 AlCl3/AlEt2Cl catalyzed propylene polymerization by allene and its relevance to the determination of the number of active centers. Die Makromol. Chem. 1987, 188, 1781–1794.spa
dcterms.bibliographicCitationVariation in the Isospecific Active Sites of Internal Donor-Free MgCl2 -Supported Ziegler Catalysts: Effect of External Electron Donors—Matsuoka—2001—Macromolecular Rapid Communications—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3927%2820010301%2922%3A5%3C326%3A%3AAID-MARC326%3E3 .0.CO%3B2-G (accessed on 24 July 2023).spa
dcterms.bibliographicCitationHernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478.spa
dcterms.bibliographicCitationHernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027.spa
dcterms.bibliographicCitationKaminsky, W. (Ed.) Metalorganic Catalysts for Synthesis and Polymerization, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1999spa
dcterms.bibliographicCitationKissin, Y.V. Olefin Polymers, Introduction. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; Mobil Chemical Company: Edison, NJ, USA, 2005; Volume 17, pp. 702–707.spa
dcterms.bibliographicCitationPropene Polymerization in the Presence of MgCl2 -Supported Ziegler-Natta Catalysts, 4. Effects of Lewis Bases on Polymer Stereochemistry. Available online: https://www.researchgate.net/publication/230354125_Propene_polymerization_in_the_ presence_of_MgCl2-supported_Ziegler-Natta_catalysts_4_Effects_of_Lewis_bases_on_polymer_stereochemistry (accessed on 24 July 2023).spa
dcterms.bibliographicCitationOro, L.A.; Carmona, D. “1 Rhodium.” The Handbook of Homogeneous Hydrogenation, Part I, Introduction, Organometallic Aspects and Mechanism of Homogeneous Hydrogenation. 2007. Available online: https://www.wiley.com/en-us/Handbook+ of+Homogeneous+Hydrogenation%2C+3+Volume+Set-p-9783527311613 (accessed on 24 July 2023).spa
dcterms.bibliographicCitationKissin, Y.V.; Ohnishi, R.; Konakazawa, T. Propylene Polymerization with Titanium-Based Ziegler-Natta Catalysts: Effects of Temperature and Modifiers on Molecular Weight, Molecular Weight Distribution and Stereospecificity. Macromol. Chem. Phys. 2004, 205, 284–301.spa
dcterms.bibliographicCitationZhang, Z.; Jiang, B.; He, F.; Fu, Z.; Xu, J.; Fan, Z. Comparative Study on Kinetics of Ethylene and Propylene Polymerizations with Supported Ziegler–Natta Catalyst: Catalyst Fragmentation Promoted by Polymer Crystalline Lamellae. Polymers 2019, 11, 358.spa
dcterms.bibliographicCitationHistorical and Philosophical Remarks on Ziegler-Natta Catalysts a Discourse on Industrial Catalysis. Available online: https://www.researchgate.net/publication/282406813_Historical_and_philosophical_remarks_on_Ziegler-Natta_catalysts_a_ discourse_on_industrial_catalysis (accessed on 24 July 2023).spa
dcterms.bibliographicCitationPuhakka, E.; Pakkanen, T.T.; Pakkanen, T.A. Theoretical Investigations on Heterogeneous Ziegler−Natta Catalyst Supports: Stability of the Electron Donors at Different Coordination Sites of MgCl2 . J. Phys. Chem. A 1997, 101, 6063–6068.spa
dcterms.bibliographicCitation. Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123.spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmos. Pollut. Res. 2021, 12, 167–176.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers 2023, 15, 2264.spa
dcterms.bibliographicCitationAlejandro, J.; Fernandez, H. Process of Extraction, Quantification and Recovery of Additives in Polypropylene with Natural Biodegradable Solvents and Use of the Polypropylene Resulting from the Multiple Extractions. U.S. Patent 17/630,296, 25 August 2022spa
dcterms.bibliographicCitationHernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920.spa
dcterms.bibliographicCitationD’Anna, V.; Norsic, S.; Gajan, D.; Sanders, K.; Pell, A.J.; Lesage, A.; Monteil, V.; Copéret, C.; Pintacuda, G.; Sautet, P. Structural Characterization of the EtOH-TiCl4 -MgCl2 Ziegler-Natta Precatalyst. J. Phys. Chem. C 2016, 120, 18075–18087spa
dcterms.bibliographicCitation. Bahri-Laleh, N. Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl. Surf. Sci. 2016, 379, 395–401.spa
dcterms.bibliographicCitationISO 16152:2005; Plastics—Determination of Xylene-Soluble Matter in Polypropylene. Available online: https://www.iso.org/ standard/32127.html (accessed on 24 July 2023).spa
dcterms.bibliographicCitationBremner, T.; Rudin, A.; Cook, D.G. Melt flow index values and molecular weight distributions of commercial thermoplastics. J. Appl. Polym. Sci. 1990, 41, 1617–1627spa
dcterms.bibliographicCitationShafiq-ur-Rehman; Ghafoor, S.; BiBi, S.; Kausar, A.; Ali, S.; Asim, S.; Mansha, A.; Shehzadi, S.A.; Jia, R. DFT and TDDFT Studies of Non-Fullerene Organometallic Based Acceptors for Organic Photovoltaics. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1676–1687spa
dcterms.bibliographicCitationSundaram, S.; Vijayakumar, V.; Balasubramanian, V. Electronic and structure conformational analysis (HOMO-LUMO, MEP, NBO, ELF, LOL, AIM) of hydrogen bond binary liquid crystal mixture: DFT/TD-DFT approach. Comput. Theor. Chem. 2022, 1217, 113920spa
dcterms.bibliographicCitationKhemalapure, S.S.; Katti, V.S.; Hiremath, C.S.; Hiremath, S.M.; Basanagouda, M.; Radder, S.B. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Vis), ELF, LOL, NBO, and Fukui function investigations on (5-bromo-benzofuran-3-yl)-acetic acid hydrazide (5BBAH): Experimental and theoretical approach. J. Mol. Struct. 2019, 1196, 280–290.spa
dcterms.bibliographicCitationBharathy, G.; Prasana, J.C.; Muthu, S.; Irfan, A.; Asif, F.B.; Saral, A.; Aayisha, S.; Devi, R.N. Evaluation of electronic and biological interactions between N-[4-(Ethylsulfamoyl)phenyl]acetamide and some polar liquids (IEFPCM solvation model) with Fukui function and molecular docking analysis. J. Mol. Liq. 2021, 340, 117271. [spa
dcterms.bibliographicCitationPandey, A.K.; Baboo, V.; Mishra, V.N.; Singh, V.K.; Dwivedi, A. Comparative Study of Molecular Docking, Structural, Electronic, Vibrational Spectra and Fukui Function Studies of Thiadiazole Containing Schiff Base—A Complete Density Functional Study. Polycycl. Aromat. Compd. 2020, 42, 13–39.spa
dcterms.bibliographicCitationZülfikaro ˘glu, A.; Batı, H.; Dege, N. A theoretical and experimental study on isonitrosoacetophenone nicotinoyl hydrazone: Crystal structure, spectroscopic properties, NBO, NPA and NLMO analyses and the investigation of interaction with some transition metals. J. Mol. Struct. 2018, 1162, 125–139spa
dcterms.bibliographicCitationShukla, B.K.; Yadava, U. DFT calculations on molecular structure, MEP and HOMO-LUMO study of 3-phenyl-1-(methyl-sulfonyl)- 1H-pyrazolo[3,4-d]pyrimidine-4-amine. Mater. Today Proc. 2022, 49, 3056–3060spa
dcterms.bibliographicCitationFradi, T.; Noureddine, O.; Ben Taheur, F.; Guergueb, M.; Nasri, S.; Amiri, N.; Almahri, A.; Roisnel, T.; Guerineau, V.; Issoui, N.; et al. New DMAP meso-arylporphyrin Magnesium(II) complex. Spectroscopic, Cyclic voltammetry and X-ray molecular structure characterization. DFT, DOS and MEP calculations and Antioxidant and Antifungal activities. J. Mol. Struct. 2021, 1236, 130299.spa
dcterms.bibliographicCitationTaniike, T.; Terano, M. The Use of Donors to Increase the Isotacticity of Polypropylene. In Polyolefins: 50 years after Ziegler and Natta I; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 257, pp. 81–98.spa
dcterms.bibliographicCitationCorrea, A.; Piemontesi, F.; Morini, G.; Cavallo, L. Key elements in the structure and function relationship of the MgCl2/TiCl4/Lewis base Ziegler-Natta catalytic system. Macromolecules 2007, 40, 9181–9189.spa
dcterms.bibliographicCitationHandbook of Polymer Science and Technology—Google Libros. Available online: https://books.google.es/books?hl=es&lr=&id= 35PLEAAAQBAJ&oi=fnd&pg=PP1&dq=Handbook+of+Polymer+Science+and+Technology:+Synthesis+and+Properties&ots= sWBW6JFbvV&sig=Ku8akKkH3NjR0IYO1r7ttdOsyTk#v=onepage&q=Handbook%20of%20Polymer%20Science%20and%20 Technology%3A%20Synthesis%20and%20Properties&f=false (accessed on 17 August 2023).spa
dcterms.bibliographicCitationHernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/polym15173619
dc.subject.keywordsPolypropylenespa
dc.subject.keywordsInhibitorsspa
dc.subject.keywordsCatalyst productivityspa
dc.subject.keywordsMelt Flow Index (MFI)spa
dc.subject.keywordsComputational chemistryspa
dc.subject.keywordsPropanolspa
dc.subject.keywordsArsinespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.