Mostrar el registro sencillo del ítem
Applying a Green Solvent with Microwave, Ultrasound, and Soxhlet Extraction Techniques to Quantify the Slip Additive Cis-1,3-docosenamide and Nine Oxidative Degradation Byproducts in Polypropylene Samples
dc.contributor.author | Hernández Fernández, Joaquin | |
dc.contributor.author | Mendoza Pérez, Jaime | |
dc.contributor.author | Ortega-Toro, Rodrigo | |
dc.date.accessioned | 2023-08-25T16:48:51Z | |
dc.date.available | 2023-08-25T16:48:51Z | |
dc.date.issued | 2023-08-18 | |
dc.date.submitted | 2023-08-25 | |
dc.identifier.citation | Joaquin, H.F.; Jaime, M.P.; Rodrigo, O.-T. Applying a Green Solvent with Microwave, Ultrasound, and Soxhlet Extraction Techniques to Quantify the Slip Additive Cis-1,3-docosenamide and Nine Oxidative Degradation Byproducts in Polypropylene Samples. Polymers 2023, 15, 3457. https://doi.org/10.3390/polym15163457 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12466 | |
dc.description.abstract | Erucamide is used as an important slip agent for polymers. However, erucamide can degrade during processing and long-term storage, forming various oxidation products. These degra dation products can affect the recovery rates of erucamide. In this study, investigated different solid–liquid extraction methods (Soxhlet, microwave, and ultrasound) and used gas chromatography with mass spectrometry (GC-MS) to quantify erucamide and its degradation byproducts in polypropy lene (PP). A multivariable experiment was designed, and a mixed-effect approach was used to analyze the results. Various extraction variables were examined, such as temperature, time, solvents, and PP pretreatments. Using a mixed-effect model with a Kenward–Roger approximation, an R2 of the model of 97% and p values of 0.168, 0.000, and 0.000 were obtained for the technical, solvent, and type of PP pretreatment variables, respectively. The highest average recoveries of erucamide were found with the microwave technique and were 96.4% using dichloromethane, 94.57% using cyclohexane, and 93.05% using limonene. With ultrasound, recoveries ranged between 85 and 92% for dichloromethane and limonene. In addition, it was observed that the extraction method had better recovery results in ground PP than in films and in pellets. Nine oxidative degradation byproducts of erucamide were identified and semi-quantified by GC-MS. The reaction mechanisms for forming each byproduct were proposed. The byproducts that experienced a higher rate of degradation of erucamide were erucamide with a hydroxyl group at position one and 12-amino-6-12-oxo-dodecanoic acid, showing more prominent peaks using the Soxhlet method with cyclohexane and dichloromethane as solvents and polypropylene (PP) films as the type of material used. | spa |
dc.description.sponsorship | Universidad Tecnológica de Bolivar, Universidad de Cartagena, Universidad de la Costa | spa |
dc.format.extent | 23 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Polymers Vol. 15 No° 16 (2023) | spa |
dc.title | Applying a Green Solvent with Microwave, Ultrasound, and Soxhlet Extraction Techniques to Quantify the Slip Additive Cis-1,3-docosenamide and Nine Oxidative Degradation Byproducts in Polypropylene Samples | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 2148 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability 2022, 14, 10919. | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Puello-Polo, E.; Trilleras, J. Characterization of Microplastics in Total Atmospheric Deposition Sampling from Areas Surrounding Industrial Complexes in Northwestern Colombia. Sustainability 2022, 14, 13613. | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123 | spa |
dcterms.bibliographicCitation | Hernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmos. Pollut. Res. 2021, 12, 167–176 | spa |
dcterms.bibliographicCitation | Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057 | spa |
dcterms.bibliographicCitation | Fernández, J.H.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. | spa |
dcterms.bibliographicCitation | Fernández, J.H.; Rincón, D.; López-Martínez, J. Development and validation of a prototype for the on-line simultaneous analysis of quality caprolactam synthesized on an industrial scale. MethodsX 2023, 10, 101952. | spa |
dcterms.bibliographicCitation | Pavon, C.; Aldas, M.; Hernández-Fernández, J.; López-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2022, 139, 51734 | spa |
dcterms.bibliographicCitation | Chacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833 | spa |
dcterms.bibliographicCitation | Llop, C.; Manrique, A.; Navarro, R.; Mijangos, C.; Reinecke, H. Control of the migration behavior of slip agents in polyolefin-based films. Polym. Eng. Sci. 2011, 51, 1763–1769. | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Puello-Polo, E.; López-Martínez, J. Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability 2023, 15, 1247. | spa |
dcterms.bibliographicCitation | Ramírez, M.X.; Hirt, D.E.; Wright, L.L. AFM Characterization of Surface Segregated Erucamide and Behenamide in Linear Low Density Polyethylene Film. Nano Lett. 2002, 2, 9–12 | spa |
dcterms.bibliographicCitation | Narayana, R.; Mohana, C.; Kumar, A. Analytical characterization of erucamide degradants by mass spectrometry. Polym. Degrad. Stab. 2022, 200, 109956 | spa |
dcterms.bibliographicCitation | . Rawls, A.S.; Hirt, D.E.; Havens, M.R.; Roberts, W.P. Evaluation of surface concentration of erucamide in LLDPE films. J. Vinyl Addit. Technol. 2002, 8, 130–138 | spa |
dcterms.bibliographicCitation | Nielson, R.C. Extraction and Quantitation of Polyolefin Additives. J. Liq. Chromatogr. 1991, 14, 503–519 | spa |
dcterms.bibliographicCitation | Markarian, J. Slip and antiblock additives: Surface medication for film and sheet. Plast. Addit. Compd. 2007, 9, 32–35 | spa |
dcterms.bibliographicCitation | Martinelli, A.B.; Mesquita, F.A. Thermoplastic Resin Composition Comprising a Mixture of Slip Agents and a Mono-Or CoExtruded, Laminated or Non-Laminated Film. U.S. Patent No. 9,029,447, 30 December 2010. | spa |
dcterms.bibliographicCitation | Molnar, N.M. Erucamide. J. Am. Oil Chem. Soc. 1974, 51, 84–87 | spa |
dcterms.bibliographicCitation | Shuler, C.A.; Janorkar, A.V.; Hirt, D.E. Fate of erucamide in polyolefin films at elevated temperature. Polym. Eng. Sci. 2004, 44, 2247–2253 | spa |
dcterms.bibliographicCitation | Garrido-López, Á.; Esquiu, V.; Tena, M.T. Determination of oleamide and erucamide in polyethylene films by pressurised fluid extraction and gas chromatography. J. Chromatogr. A 2006, 1124, 51–56 | spa |
dcterms.bibliographicCitation | Vandenburg, H.; Clifford, A.; Bartle, K.; Garden, L.; Dean, J.; Costley, C. Critical Review: Analytical Extraction of Additives From Polymers. Analyst 1997, 122, 101R–116R. | spa |
dcterms.bibliographicCitation | Nerín, C.; Salafranca, J.; Cacho, J.; Rubio, C. Separation of polymer and on-line determination of several antioxidants and UV stabilizers by coupling size-exclusion and normal-phase high-performance liquid chromatography columns. J. Chromatogr. A 1995, 690, 230–236. | spa |
dcterms.bibliographicCitation | Alejandro, J.; Fernandez, H. Process of Extraction, Quantification and Recovery of Additives in Polypropylene with Natural Biodegradable Solvents and Use of the Polypropylene Resulting from the Multiple Extractions. U.S. Patent Application No. 17/630,296, 24 July 2020. | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers 2023, 15, 2264. | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808 | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation. Water 2023, 15, 933 | spa |
dcterms.bibliographicCitation | da Rosa, G.S.; Vanga, S.K.; Gariepy, Y.; Raghavan, V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innov. Food Sci. Emerg. Technol. 2019, 58, 102234. | spa |
dcterms.bibliographicCitation | Bridson, J.H.; Gaugler, E.C.; Smith, D.A.; Northcott, G.L.; Gaw, S. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches. J. Hazard Mater. 2021, 414, 125571 | spa |
dcterms.bibliographicCitation | Salamanca, D.; Dobslaw, D.; Engesser, K.H. Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere 2017, 176, 97–107. | spa |
dcterms.bibliographicCitation | Ciclohexano CASRN 110-82-7|IRIS|EPA de EE. UU., ORD. Available online: https://iris.epa.gov/ChemicalLanding/ &substance_nmbr=1005 (accessed on 4 July 2023). | spa |
dcterms.bibliographicCitation | Schlosser, P.M.; Bale, A.S.; Gibbons, C.F.; Wilkins, A.; Cooper, G.S. Human Health Effects of Dichloromethane: Key Findings and Scientific Issues. Environ. Health Perspect. 2014, 123, 114–119. | spa |
dcterms.bibliographicCitation | Sharma, A.; Yu, E.; Morose, G.; Nguyen, D.T.; Chen, W.T. Designing safer solvents to replace methylene chloride for liquid chromatography applications using thin-layer chromatography as a screening tool. Separations 2021, 8, 172. | spa |
dcterms.bibliographicCitation | Buranarom, A.; Navasumrit, P.; Ngaotepprutaram, T.; Ruchirawat, M. Dichloromethane increases mutagenic DNA damage and transformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinoma cell lines. Chem. Biol. Interact. 2021, 346, 109580. | spa |
dcterms.bibliographicCitation | Cayot, N.; Lafarge, C.; Bou-Maroun, E.; Cayot, P. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system. J. Chromatogr. A 2016, 1456, 77–88. | spa |
dcterms.bibliographicCitation | Cooper, G.S.; Scott, C.S.; Bale, A.S. Insights from Epidemiology into Dichloromethane and Cancer Risk. Int. J. Environ. Res. Public Health 2011, 8, 3380–3398 | spa |
dcterms.bibliographicCitation | Welton, T. Solvents and sustainable chemistry. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150502. | spa |
dcterms.bibliographicCitation | Yasugi, T.; Kawai, T.; Mizunuma, K.; Kishi, R.; Harabuchi, I.; Yuasa, J.; Eguchi, T.; Sugimoto, R.; Seiji, K.; Ikeda, M. Exposure monitoring and health effect studies of workers occupationally exposed to cyclohexane vapor. Int. Arch. Occup. Environ. Health 1994, 65, 343–350. | spa |
dcterms.bibliographicCitation | Yuasa, J.; Kishi, R.; Eguchi, T.; Harabuchi, I.; Kawai, T.; Ikeda, M.; Sugimoto, R.; Matsumoto, H.; Miyake, H. Investigation on neurotoxicity of occupational exposure to cyclohexane: A neurophysiological study. Occup. Environ. Med. 1996, 53, 174–179 | spa |
dcterms.bibliographicCitation | Satira, A.; Espro, C.; Paone, E.; Calabrò, P.S.; Pagliaro, M.; Ciriminna, R.; Mauriello, F. The Limonene Biorefinery: From Extractive Technologies to Its Catalytic Upgrading into p-Cymene. Catalysts 2021, 11, 387. | spa |
dcterms.bibliographicCitation | Cui, G.; Yang, X.; Liu, Z.; Wei, M.; Liu, T.; Gu, H.; Yang, L. Potential Use of Limonene as an Alternative Solvent for Extraction of Gutta-Percha from Eucommia ulmoides. ACS Sustain. Chem. Eng. 2022, 10, 11057–11068 | spa |
dcterms.bibliographicCitation | Boukroufa, M.; Boutekedjiret, C.; Chemat, F. Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resour.-Effic. Technol. 2017, 3, 252–262 | spa |
dcterms.bibliographicCitation | Virot, M.; Tomao, V.; Ginies, C.; Chemat, F. Total Lipid Extraction of Food Using d-Limonene as an Alternative to n-Hexane. Chroma 2008, 68, 311–313 | spa |
dcterms.bibliographicCitation | El-Deen, A.K.; Shimizu, K. Application of D-Limonene as a Bio-based Solvent in Low Density-Dispersive Liquid–Liquid Microextraction of Acidic Drugs from Aqueous Samples. Anal. Sci. 2019, 35, 1385–1391 | spa |
dcterms.bibliographicCitation | Santos, J.; Vladisavljevi´c, G.T.; Holdich, R.G.; Dragosavac, M.M.; Muñoz, J. Controlled production of eco-friendly emulsions using direct and premix membrane emulsification. Chem. Eng. Res. Des. 2015, 98, 59–69 | spa |
dcterms.bibliographicCitation | Rodríguez-Llorente, D.; Cañada-Barcala, A.; Muñoz, C.; Pascual-Muñoz, G.; Navarro, P.; Santiago, R.; Águeda, I.; ÁlvarezTorrellas, S.; García, J.; Larriba, M. Separation of phenols from aqueous streams using terpenoids and hydrophobic eutectic solvents. Sep. Purif. Technol. 2020, 251, 117379 | spa |
dcterms.bibliographicCitation | . Prache, N.; Abreu, S.; Sassiat, P.; Thiébaut, D.; Chaminade, P. Alternative solvents for improving the greenness of normal phase liquid chromatography of lipid classes. J. Chromatogr. A 2016, 1464, 55–63 | spa |
dcterms.bibliographicCitation | Esteve-Turrillas, F.A.; Armenta, S.; Garrigues, S.; de la Guardia, M. Smart Sorption Materials in Green Analytical Chemistry. In Green Analytical Chemistry. Green Chemistry and Sustainable Technology; Springer: Singapore, 2019 | spa |
dcterms.bibliographicCitation | ICSC 0918-D-LIMONENO. Available online: https://www.ilo.org/dyn/icsc/showcard.display?p_card_id=0918&p_version=2& p_lang=es (accessed on 4 July 2023). | spa |
dcterms.bibliographicCitation | Holˇcapek, M.; Jirásko, R.; Lísa, M. Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules. J. Chromatogr. A 2010, 1217, 3908–3921. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/polym15163457 | |
dc.subject.keywords | Erucamide | spa |
dc.subject.keywords | Extraction | spa |
dc.subject.keywords | Microwave | spa |
dc.subject.keywords | Soxhlet | spa |
dc.subject.keywords | Ultrasound | spa |
dc.subject.keywords | Cyclohexane | spa |
dc.subject.keywords | Dichloromethane | spa |
dc.subject.keywords | Limonene | spa |
dc.subject.keywords | GC-MS | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.