Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Fernández, Joaquin
dc.contributor.authorMendoza Pérez, Jaime
dc.contributor.authorOrtega-Toro, Rodrigo
dc.date.accessioned2023-08-25T16:48:51Z
dc.date.available2023-08-25T16:48:51Z
dc.date.issued2023-08-18
dc.date.submitted2023-08-25
dc.identifier.citationJoaquin, H.F.; Jaime, M.P.; Rodrigo, O.-T. Applying a Green Solvent with Microwave, Ultrasound, and Soxhlet Extraction Techniques to Quantify the Slip Additive Cis-1,3-docosenamide and Nine Oxidative Degradation Byproducts in Polypropylene Samples. Polymers 2023, 15, 3457. https://doi.org/10.3390/polym15163457spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12466
dc.description.abstractErucamide is used as an important slip agent for polymers. However, erucamide can degrade during processing and long-term storage, forming various oxidation products. These degra dation products can affect the recovery rates of erucamide. In this study, investigated different solid–liquid extraction methods (Soxhlet, microwave, and ultrasound) and used gas chromatography with mass spectrometry (GC-MS) to quantify erucamide and its degradation byproducts in polypropy lene (PP). A multivariable experiment was designed, and a mixed-effect approach was used to analyze the results. Various extraction variables were examined, such as temperature, time, solvents, and PP pretreatments. Using a mixed-effect model with a Kenward–Roger approximation, an R2 of the model of 97% and p values of 0.168, 0.000, and 0.000 were obtained for the technical, solvent, and type of PP pretreatment variables, respectively. The highest average recoveries of erucamide were found with the microwave technique and were 96.4% using dichloromethane, 94.57% using cyclohexane, and 93.05% using limonene. With ultrasound, recoveries ranged between 85 and 92% for dichloromethane and limonene. In addition, it was observed that the extraction method had better recovery results in ground PP than in films and in pellets. Nine oxidative degradation byproducts of erucamide were identified and semi-quantified by GC-MS. The reaction mechanisms for forming each byproduct were proposed. The byproducts that experienced a higher rate of degradation of erucamide were erucamide with a hydroxyl group at position one and 12-amino-6-12-oxo-dodecanoic acid, showing more prominent peaks using the Soxhlet method with cyclohexane and dichloromethane as solvents and polypropylene (PP) films as the type of material used.spa
dc.description.sponsorshipUniversidad Tecnológica de Bolivar, Universidad de Cartagena, Universidad de la Costaspa
dc.format.extent23 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourcePolymers Vol. 15 No° 16 (2023)spa
dc.titleApplying a Green Solvent with Microwave, Ultrasound, and Soxhlet Extraction Techniques to Quantify the Slip Additive Cis-1,3-docosenamide and Nine Oxidative Degradation Byproducts in Polypropylene Samplesspa
dcterms.bibliographicCitationHernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 2148spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability 2022, 14, 10919.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Trilleras, J. Characterization of Microplastics in Total Atmospheric Deposition Sampling from Areas Surrounding Industrial Complexes in Northwestern Colombia. Sustainability 2022, 14, 13613.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123spa
dcterms.bibliographicCitationHernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmos. Pollut. Res. 2021, 12, 167–176spa
dcterms.bibliographicCitationGómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057spa
dcterms.bibliographicCitationFernández, J.H.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832.spa
dcterms.bibliographicCitationFernández, J.H.; Rincón, D.; López-Martínez, J. Development and validation of a prototype for the on-line simultaneous analysis of quality caprolactam synthesized on an industrial scale. MethodsX 2023, 10, 101952.spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; Hernández-Fernández, J.; López-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2022, 139, 51734spa
dcterms.bibliographicCitationChacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833spa
dcterms.bibliographicCitationLlop, C.; Manrique, A.; Navarro, R.; Mijangos, C.; Reinecke, H. Control of the migration behavior of slip agents in polyolefin-based films. Polym. Eng. Sci. 2011, 51, 1763–1769.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; López-Martínez, J. Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability 2023, 15, 1247.spa
dcterms.bibliographicCitationRamírez, M.X.; Hirt, D.E.; Wright, L.L. AFM Characterization of Surface Segregated Erucamide and Behenamide in Linear Low Density Polyethylene Film. Nano Lett. 2002, 2, 9–12spa
dcterms.bibliographicCitationNarayana, R.; Mohana, C.; Kumar, A. Analytical characterization of erucamide degradants by mass spectrometry. Polym. Degrad. Stab. 2022, 200, 109956spa
dcterms.bibliographicCitation. Rawls, A.S.; Hirt, D.E.; Havens, M.R.; Roberts, W.P. Evaluation of surface concentration of erucamide in LLDPE films. J. Vinyl Addit. Technol. 2002, 8, 130–138spa
dcterms.bibliographicCitationNielson, R.C. Extraction and Quantitation of Polyolefin Additives. J. Liq. Chromatogr. 1991, 14, 503–519spa
dcterms.bibliographicCitationMarkarian, J. Slip and antiblock additives: Surface medication for film and sheet. Plast. Addit. Compd. 2007, 9, 32–35spa
dcterms.bibliographicCitationMartinelli, A.B.; Mesquita, F.A. Thermoplastic Resin Composition Comprising a Mixture of Slip Agents and a Mono-Or CoExtruded, Laminated or Non-Laminated Film. U.S. Patent No. 9,029,447, 30 December 2010.spa
dcterms.bibliographicCitationMolnar, N.M. Erucamide. J. Am. Oil Chem. Soc. 1974, 51, 84–87spa
dcterms.bibliographicCitationShuler, C.A.; Janorkar, A.V.; Hirt, D.E. Fate of erucamide in polyolefin films at elevated temperature. Polym. Eng. Sci. 2004, 44, 2247–2253spa
dcterms.bibliographicCitationGarrido-López, Á.; Esquiu, V.; Tena, M.T. Determination of oleamide and erucamide in polyethylene films by pressurised fluid extraction and gas chromatography. J. Chromatogr. A 2006, 1124, 51–56spa
dcterms.bibliographicCitationVandenburg, H.; Clifford, A.; Bartle, K.; Garden, L.; Dean, J.; Costley, C. Critical Review: Analytical Extraction of Additives From Polymers. Analyst 1997, 122, 101R–116R.spa
dcterms.bibliographicCitationNerín, C.; Salafranca, J.; Cacho, J.; Rubio, C. Separation of polymer and on-line determination of several antioxidants and UV stabilizers by coupling size-exclusion and normal-phase high-performance liquid chromatography columns. J. Chromatogr. A 1995, 690, 230–236.spa
dcterms.bibliographicCitationAlejandro, J.; Fernandez, H. Process of Extraction, Quantification and Recovery of Additives in Polypropylene with Natural Biodegradable Solvents and Use of the Polypropylene Resulting from the Multiple Extractions. U.S. Patent Application No. 17/630,296, 24 July 2020.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers 2023, 15, 2264.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808spa
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Quantification of the Synthetic Phenolic Antioxidant Cyanox 1790 in Bottled Water with SPE-HPLC/MS/MS and Determination of the Impact of the Use of Recycled Packaging on Its Generation. Water 2023, 15, 933spa
dcterms.bibliographicCitationda Rosa, G.S.; Vanga, S.K.; Gariepy, Y.; Raghavan, V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innov. Food Sci. Emerg. Technol. 2019, 58, 102234.spa
dcterms.bibliographicCitationBridson, J.H.; Gaugler, E.C.; Smith, D.A.; Northcott, G.L.; Gaw, S. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches. J. Hazard Mater. 2021, 414, 125571spa
dcterms.bibliographicCitationSalamanca, D.; Dobslaw, D.; Engesser, K.H. Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere 2017, 176, 97–107.spa
dcterms.bibliographicCitationCiclohexano CASRN 110-82-7|IRIS|EPA de EE. UU., ORD. Available online: https://iris.epa.gov/ChemicalLanding/ &substance_nmbr=1005 (accessed on 4 July 2023).spa
dcterms.bibliographicCitationSchlosser, P.M.; Bale, A.S.; Gibbons, C.F.; Wilkins, A.; Cooper, G.S. Human Health Effects of Dichloromethane: Key Findings and Scientific Issues. Environ. Health Perspect. 2014, 123, 114–119.spa
dcterms.bibliographicCitationSharma, A.; Yu, E.; Morose, G.; Nguyen, D.T.; Chen, W.T. Designing safer solvents to replace methylene chloride for liquid chromatography applications using thin-layer chromatography as a screening tool. Separations 2021, 8, 172.spa
dcterms.bibliographicCitationBuranarom, A.; Navasumrit, P.; Ngaotepprutaram, T.; Ruchirawat, M. Dichloromethane increases mutagenic DNA damage and transformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinoma cell lines. Chem. Biol. Interact. 2021, 346, 109580.spa
dcterms.bibliographicCitationCayot, N.; Lafarge, C.; Bou-Maroun, E.; Cayot, P. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system. J. Chromatogr. A 2016, 1456, 77–88.spa
dcterms.bibliographicCitationCooper, G.S.; Scott, C.S.; Bale, A.S. Insights from Epidemiology into Dichloromethane and Cancer Risk. Int. J. Environ. Res. Public Health 2011, 8, 3380–3398spa
dcterms.bibliographicCitationWelton, T. Solvents and sustainable chemistry. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150502.spa
dcterms.bibliographicCitationYasugi, T.; Kawai, T.; Mizunuma, K.; Kishi, R.; Harabuchi, I.; Yuasa, J.; Eguchi, T.; Sugimoto, R.; Seiji, K.; Ikeda, M. Exposure monitoring and health effect studies of workers occupationally exposed to cyclohexane vapor. Int. Arch. Occup. Environ. Health 1994, 65, 343–350.spa
dcterms.bibliographicCitationYuasa, J.; Kishi, R.; Eguchi, T.; Harabuchi, I.; Kawai, T.; Ikeda, M.; Sugimoto, R.; Matsumoto, H.; Miyake, H. Investigation on neurotoxicity of occupational exposure to cyclohexane: A neurophysiological study. Occup. Environ. Med. 1996, 53, 174–179spa
dcterms.bibliographicCitationSatira, A.; Espro, C.; Paone, E.; Calabrò, P.S.; Pagliaro, M.; Ciriminna, R.; Mauriello, F. The Limonene Biorefinery: From Extractive Technologies to Its Catalytic Upgrading into p-Cymene. Catalysts 2021, 11, 387.spa
dcterms.bibliographicCitationCui, G.; Yang, X.; Liu, Z.; Wei, M.; Liu, T.; Gu, H.; Yang, L. Potential Use of Limonene as an Alternative Solvent for Extraction of Gutta-Percha from Eucommia ulmoides. ACS Sustain. Chem. Eng. 2022, 10, 11057–11068spa
dcterms.bibliographicCitationBoukroufa, M.; Boutekedjiret, C.; Chemat, F. Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resour.-Effic. Technol. 2017, 3, 252–262spa
dcterms.bibliographicCitationVirot, M.; Tomao, V.; Ginies, C.; Chemat, F. Total Lipid Extraction of Food Using d-Limonene as an Alternative to n-Hexane. Chroma 2008, 68, 311–313spa
dcterms.bibliographicCitationEl-Deen, A.K.; Shimizu, K. Application of D-Limonene as a Bio-based Solvent in Low Density-Dispersive Liquid–Liquid Microextraction of Acidic Drugs from Aqueous Samples. Anal. Sci. 2019, 35, 1385–1391spa
dcterms.bibliographicCitationSantos, J.; Vladisavljevi´c, G.T.; Holdich, R.G.; Dragosavac, M.M.; Muñoz, J. Controlled production of eco-friendly emulsions using direct and premix membrane emulsification. Chem. Eng. Res. Des. 2015, 98, 59–69spa
dcterms.bibliographicCitationRodríguez-Llorente, D.; Cañada-Barcala, A.; Muñoz, C.; Pascual-Muñoz, G.; Navarro, P.; Santiago, R.; Águeda, I.; ÁlvarezTorrellas, S.; García, J.; Larriba, M. Separation of phenols from aqueous streams using terpenoids and hydrophobic eutectic solvents. Sep. Purif. Technol. 2020, 251, 117379spa
dcterms.bibliographicCitation. Prache, N.; Abreu, S.; Sassiat, P.; Thiébaut, D.; Chaminade, P. Alternative solvents for improving the greenness of normal phase liquid chromatography of lipid classes. J. Chromatogr. A 2016, 1464, 55–63spa
dcterms.bibliographicCitationEsteve-Turrillas, F.A.; Armenta, S.; Garrigues, S.; de la Guardia, M. Smart Sorption Materials in Green Analytical Chemistry. In Green Analytical Chemistry. Green Chemistry and Sustainable Technology; Springer: Singapore, 2019spa
dcterms.bibliographicCitationICSC 0918-D-LIMONENO. Available online: https://www.ilo.org/dyn/icsc/showcard.display?p_card_id=0918&p_version=2& p_lang=es (accessed on 4 July 2023).spa
dcterms.bibliographicCitationHolˇcapek, M.; Jirásko, R.; Lísa, M. Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules. J. Chromatogr. A 2010, 1217, 3908–3921.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/polym15163457
dc.subject.keywordsErucamidespa
dc.subject.keywordsExtractionspa
dc.subject.keywordsMicrowavespa
dc.subject.keywordsSoxhletspa
dc.subject.keywordsUltrasoundspa
dc.subject.keywordsCyclohexanespa
dc.subject.keywordsDichloromethanespa
dc.subject.keywordsLimonenespa
dc.subject.keywordsGC-MSspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.