Mostrar el registro sencillo del ítem

dc.contributor.authorCastilla Caballero, Deyler Rafael
dc.contributor.authorHernández-Ramírez, Aracely
dc.contributor.authorVázquez-Rodríguez, Sofía
dc.contributor.authorColina-Márquez, José
dc.contributor.authorMachuca-Martínez, Fiderman
dc.contributor.authorBarraza-Burgos, Juan
dc.contributor.authorRoa-Espinosa, Aicardo
dc.contributor.authorMedina Guerrero, Astrid del Rosario
dc.contributor.authorGunasekaran, Sundaram
dc.contributor.authorColina-Márquez, José
dc.coverage.spatialColombia-México-Estados Unidos
dc.coverage.temporal2017-2023
dc.date.accessioned2023-08-17T20:37:48Z
dc.date.available2023-08-17T20:37:48Z
dc.date.issued2023-06-02
dc.date.submitted2023-08-17
dc.identifier.citationCastilla-Caballero, D., Hernandez-Ramirez, A., Vazquez-Rodriguez, S., Colina-Márquez, J., Machuca-Martínez, F., Barraza-Burgos, J., Roa-Espinosa, A., Medina-Guerrero, A., & Gunasekaran, S. (2023). Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications. Journal of Environmental Chemical Engineering, 11(3), 110274. https://doi.org/10.1016/j.jece.2023.110274spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12461
dc.description.abstractBiochars are outstanding materials obtained from the pyrolysis of biomass, possessing unique physicochemical properties that are attractive for many environmental applications, including photocatalysis. In this work, we have synthesized for the first time TiO2/Biochar composites using Aeroxide P25 TiO2 and biochars produced from the thermal treatment at low (or null) oxygen content of Colombian coconut shells. To explore and ultimately tune the final physicochemical properties of the TiO2/Biochars materials, a facile wet impregnation method was assessed, in which the following factors were evaluated: 1) Temperature and 2) %O2 in the pyrolysis of the biomass, 3) TiO2/Biochar ratio used in the impregnation and 4) Calcination temperature of the TiO2/Biochar composites. A comprehensive characterization of the novel composites was done, using techniques such as: XRD, XPS, BET, ATR-FTIR, diffuse reflectance, PL, SEM, and electrochemical analysis. The material synthesized with TPyrol = 350 ◦C, %O2 = 2.5, T/B = 0.8 and TCal of 800 ◦C presented notable properties such as low Eg, reduced recombination of e--h+ pairs, a high surface area, and a relatively high photogeneration of charges, and interestingly, it experienced phase transition from Anatase-Rutile to Anatase-Brookite. On the other hand, low TPyrol and high %O2 values conduct to hydrophilic functional groups on the TiO2/Biochar composites, whereas the use of higher TPyrol and TCal lead to a more hydrophobic character but promote the reduction of the recombination of photogenerated e--h+ pairs. As a result, this information is relevant for planning future applications of photocatalysis for degrading pollutants of different chemical nature.spa
dc.description.sponsorshipMinciencias-Fulbright-Universidad del Vallespa
dc.format.extentArchivo original:16 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceJournal of Environmental Chemical Engineeringspa
dc.titleEffect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applicationsspa
dcterms.bibliographicCitationM. Zeshan et al. Remediation of pesticides using TiO2 based photocatalytic strategies: a review Chemosphere (2022)spa
dcterms.bibliographicCitationS. Kundu et al. Polymeric photocatalytic membrane: an emerging solution for environmental remediation Chem. Eng. J. (2022)spa
dcterms.bibliographicCitationM. Motamedi et al. Recent developments in photocatalysis of industrial effluents ։ a review and example of phenolic compounds degradation Chemosphere (2022)spa
dcterms.bibliographicCitationA. Talaiekhozani et al. Recent advances in photocatalytic removal of organic and inorganic pollutants in air J. Clean. Prod. (2021)spa
dcterms.bibliographicCitationD. Castilla-Caballero et al. Solid-state photocatalysis for plastics abatement: a review Mater. Sci. Semicond. Process (2022)spa
dcterms.bibliographicCitationD. Martel et al. Pertinent parameters in photo-generation of electrons: comparative study of anatase-based nano-TiO2 suspensions J. Colloid Interface Sci. (2016)spa
dcterms.bibliographicCitationM. Hassan et al. Employing TiO2 photocatalysis to deal with landfill leachate: current status and development Chem. Eng. J. (2016)spa
dcterms.bibliographicCitationN.A. Mir et al. Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment Sci. Total Environ. 458– (2013)spa
dcterms.bibliographicCitationF. Amor et al. Contribution of TiO2 and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High Performance Concrete Case Stud. Constr. Mater. (2022)spa
dcterms.bibliographicCitationS.S. Ali et al. Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes Environ. Nanotechnol. Monit. Manag. (2016)spa
dcterms.bibliographicCitationM. Daous et al. Gold-modified N-doped TiO2 and N-doped WO3 / TiO2 semiconductors as photocatalysts for UV–visible light destruction of aqueous 2,4,6-trinitrotoluene solution J. Mol. Catal. A Chem. (2014)spa
dcterms.bibliographicCitationP. Mazierski et al. Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: The effect of applied voltage, anodization time and amount of nitrogen dopant Appl. Catal. B. (2016)spa
dcterms.bibliographicCitationX. Jiang et al. Anatase and rutile in evonik aeroxide P25: Heterojunctioned or individual nanoparticles Catal. Today (2018)spa
dcterms.bibliographicCitationR. Fagan et al. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern Mater. Sci. Semicond. Process (2016)spa
dcterms.bibliographicCitationY. Xie et al. TiO2-biochar composites as alternative photocatalyst for stormwater disinfection J. Water Process Eng. (2022)spa
dcterms.bibliographicCitationJ. Fito et al. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater Sci. Total Environ. (2022)spa
dcterms.bibliographicCitationJ. Sha et al. Comparison of nano-TiO2 immobilization approaches onto biochar: superiorities of click chemistry strategy and self-acceleration of pollutant degradation J. Environ. Chem. Eng. (2022)spa
dcterms.bibliographicCitationD. Guo et al. Synergistic mechanism of biochar-nano TiO2 adsorption-photocatalytic oxidation of toluene Fuel Process. Technol. (2022)spa
dcterms.bibliographicCitationD. Mohan et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review Bioresour. Technol. (2014)spa
dcterms.bibliographicCitationM.V. Pinna et al. Photooxidation of foramsulfuron: effects of char substances J. Photochem. Photobio. A Chem. (2016)spa
dcterms.bibliographicCitationM.V. Pinna et al. Photooxidation of foramsulfuron: effects of char substances J. Photochem. Photobio. A Chem. (2016)spa
dcterms.bibliographicCitationV. Makrigianni et al. Preparation, characterization and photocatalytic performance of pyrolytic-tire-char/TiO2 composites, toward phenol oxidation in aqueous solutions Appl. Catal. B. (2015)spa
dcterms.bibliographicCitationO. Das et al. Mechanical and flammability characterisations of biochar/polypropylene biocomposites Compos B Eng. (2016)spa
dcterms.bibliographicCitationP. Srinivasan et al. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications Sci. Total Environ. 512– (2015)spa
dcterms.bibliographicCitationV. Hansen et al. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: a farm case study J. Environ. Manag. (2017)spa
dcterms.bibliographicCitationU. Kamran et al. MnO2-decorated biochar composites of coconut shell and rice husk: an efficient lithium ions adsorption-desorption performance in aqueous media Chemosphere (2020)spa
dcterms.bibliographicCitationS. Xu et al. A highly efficient strategy for enhancing the adsorptive and magnetic capabilities of biochar using Fenton oxidation Bioresour. Technol. (2020)spa
dcterms.bibliographicCitationS. Xiong et al. Factors study for the removal of epoxiconazole in water by common biochars Biochem Eng. J. (2020)spa
dcterms.bibliographicCitationT. Wang et al. Insights into the mechanism of co-adsorption between tetracycline and nano-TiO2 on coconut shell porous biochar in binary system Adv. Powder Technol. (2021)spa
dcterms.bibliographicCitationS. Zhang et al. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent Chemosphere (2018)spa
dcterms.bibliographicCitationX.L. García-Montelongo et al. Photo-oxidative degradation of TiO2/polypropylene films Mater. Res Bull. (2014)spa
dcterms.bibliographicCitationF.U. Haider et al. Biochar application for remediation of organic toxic pollutants in contaminated soils; an update Ecotoxicol. Environ. Saf. (2022)spa
dcterms.bibliographicCitationH. Tang et al. Engineered biochar effects on soil physicochemical properties and biota communities: a critical review Chemosphere (2023)spa
dcterms.bibliographicCitationD. Castilla-Caballero et al. Experimental data on the production and characterization of biochars derived from coconut-shell wastes obtained from the Colombian Pacific Coast at low temperature pyrolysis Data Brief. (2020)spa
dcterms.bibliographicCitationE.N. Yargicoglu et al. Physical and chemical characterization of waste wood derived biochars Waste Manag. (2015)spa
dcterms.bibliographicCitationA. Omri et al. Synthesis, surface characterization and photocatalytic activity of TiO2 supported on almond shell activated carbon J. Mater. Sci. Technol. (2014)spa
dcterms.bibliographicCitationM. Smith et al. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations Carbon N. Y (2016)spa
dcterms.bibliographicCitationW. Suliman et al. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties Biomass Bioenergy (2016)spa
dcterms.bibliographicCitationW. Suliman et al. Modification of biochar surface by air oxidation: role of pyrolysis temperature Biomass-.-. Bioenergy (2016)spa
dcterms.bibliographicCitationX. He et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues Energy (2018)spa
dcterms.bibliographicCitationJ.H. Yuan et al. The forms of alkalis in the biochar produced from crop residues at different temperatures Bioresour. Technol. (2011)spa
dcterms.bibliographicCitationR.J.J. Gilham et al. On the applicability of XPS for quantitative total organic and elemental carbon analysis of airborne particulate matter Atmos. Environ. (2008)spa
dcterms.bibliographicCitationP. Zhang et al. Surface properties of activated sludge-derived biochar determine the facilitating effects on Geobacter co-cultures Water Res (2018)spa
dcterms.bibliographicCitationH. Zhang et al. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy Biomass Bioenergy (2017)spa
dcterms.bibliographicCitationJ. Jin et al. SrCO3-modified brookite/anatase TiO2 heterophase junctions with enhanced activity and selectivity of CO2 photoreduction to CH4 Appl. Surf. Sci. (2019)spa
dcterms.bibliographicCitationL. Lu et al. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange Chemosphere (2019)spa
dcterms.bibliographicCitationO. Ola et al. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction J. Photochem. Photobiol. C: Photochem. Rev. (2015)spa
dcterms.bibliographicCitationZ. Sun et al. Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst Renew. Energy (2022)spa
dcterms.bibliographicCitationR. Djellabi et al. Carbonaceous biomass-titania composites with Ti–O–C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light Chem. Eng. J. (2019)spa
dcterms.bibliographicCitationH. Zhang et al. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices Chemosphere (2017)spa
datacite.rightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1016/j.jece.2023.110274
dc.subject.keywordsBiocharspa
dc.subject.keywordsImpregnation,spa
dc.subject.keywordsCalcinationspa
dc.subject.keywordsPhysicochemical characterizationspa
dc.subject.keywordsPhotoactivityspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
dc.date.embargoEndeu-repo/date/embargoEnd/2023-06-03spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Ambientalspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.