Mostrar el registro sencillo del ítem

dc.contributor.authorPaternina-Verona, Duban A
dc.contributor.authorCoronado-Hernández, Oscar E.
dc.contributor.authorEspinoza-Román, Héctor G.
dc.contributor.authorFuertes-Miquel, Vicente S.
dc.contributor.authorRamos, Helena M.
dc.date.accessioned2023-08-14T17:56:14Z
dc.date.available2023-08-14T17:56:14Z
dc.date.issued2023-06-29
dc.date.submitted2023-08-14
dc.identifier.citationPaternina-Verona, Duban A., Oscar E. Coronado-Hernández, Hector G. Espinoza-Román, Vicente S. Fuertes-Miquel, and Helena M. Ramos. 2023. "Different Experimental and Numerical Models to Analyse Emptying Processes in Pressurised Pipes with Trapped Air" Applied Sciences 13, no. 13: 7727. https://doi.org/10.3390/app13137727spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12448
dc.description.abstractIn hydraulic engineering, some researchers have developed different mathematical and numerical tools for a better understanding of the physical interaction between water flow in pipes with trapped air during emptying processes, where they have made contributions on the use of simple and complex models in different application cases. In this article, a comparative study of different experimental and numerical models existing in the literature for the analysis of trapped air in pressurised pipelines subjected to different scenarios of emptying processes is presented, where different authors have develope, experimental, one-dimensional mathematical and complex computational fluid dynamics (CFD) models (two-dimensional and three-dimensional) to understand the level of applicability of these models in different hydraulic scenarios, from the physical and computational point of view. In general, experimental, mathematical and CFD models had maximum Reynolds numbers ranging from 2670 to 20,467, and it was possible to identify that the mathematical models offered relevant numerical information in a short simulation time on the order of seconds. However, there are restrictions to visualise some complex hydraulic and thermodynamic phenomena that CFD models are able to illustrate in detail with a numerical resolution similar to the mathematical models, and these require simulation times of hours or days. From this research, it was concluded that the knowledge of the information offered by the different models can be useful to hydraulic engineers to identify physical and numerical elements present in the air–water interaction and computational conditions necessary for the development of models that help decision-making in the field of hydraulics of pressurised pipelines.spa
dc.format.extent26 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceApplied Sciences - Vol. 13 No. 13 (2023)spa
dc.titleDifferent Experimental and Numerical Models to Analyse Emptying Processes in Pressurised Pipes with Trapped Airspa
dcterms.bibliographicCitationChosie, C.D.; Hatcher, T.M.; Vasconcelos, J.G. Experimental and numerical investigation on the motion of discrete air pockets in pressurized water flows. J. Hydraul. Eng. 2014, 140, 04014038spa
dcterms.bibliographicCitationAWWA. Air Release, Air/Vacuum Valves and Combination Air Valves (M51); American Water Works Association: Denver, CO, USA, 2016.spa
dcterms.bibliographicCitationLauchlan, C.; Escarameia, M.; May, R.; Burrows, R.; Gahan, C. Air in Pipelines—A Literature Review; Report SR; HR Wallingford: Wallingford, UK, 2005; Volume 649spa
dcterms.bibliographicCitationMartin, C.S. Entrapped air in pipelines. In Proceedings of the Second International Conference on Pressure Surges, London, UK, 22–24 September 1976spa
dcterms.bibliographicCitationFuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Mora-Meliá, D.; Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: A literature review. Urban Water J. 2019, 16, 299–311spa
dcterms.bibliographicCitationCoronado Hernández, Ó.E. Transient Phenomena during the Emptying Process of Water in Pressurized Pipelines. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2019.spa
dcterms.bibliographicCitationBesharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. J. Hydraul. Res. 2019, 58, 553–565spa
dcterms.bibliographicCitationPaternina-Verona, D.A.; Coronado-Hernández, O.E.; Aguirre-Mendoza, A.M.; Espinoza-Román, H.G.; Fuertes-Miquel, V.S. Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air. J. Hydraul. Eng. 2023, 149, 04023007.spa
dcterms.bibliographicCitationFuertes, V. Hydraulic Transients with Entrapped Air Pockets. Ph.D. Thesis, Department of Hydraulic Engineering, Polytechnic University of Valencia, Editorial Universitat Politècnica de València, Valencia, Spain, 2001spa
dcterms.bibliographicCitationZhou, L.; Liu, D.; Karney, B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline. J. Hydraul. Eng. 2013, 139, 949–959.spa
dcterms.bibliographicCitationZhou, L.; Liu, D.; Karney, B.; Wang, P. Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pockets. J. Hydraul. Eng. 2013, 139, 1041–1051.spa
dcterms.bibliographicCitationZhou, L.; Pan, T.; Wang, H.; Liu, D.; Wang, P. Rapid air expulsion through an orifice in a vertical water pipe. J. Hydraul. Res. 2019, 57, 307–317spa
dcterms.bibliographicCitationZhou, L.; Lu, Y.; Karney, B.; Wu, G.; Elong, A.; Huang, K. Energy dissipation in a rapid filling vertical pipe with trapped air. J. Hydraul. Res. 2023, 61, 120–132.spa
dcterms.bibliographicCitationLaanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vučković, S.; Hou, Q.; Tijsseling, A.S.; Anderson, A.; van’t Westende, J.M. Emptying of large-scale pipeline by pressurized air. J. Hydraul. Eng. 2012, 138, 1090–1100spa
dcterms.bibliographicCitationLaanearu, J.; Hou, Q.; Annus, I.; Tijsseling, A.S. Water-column mass losses during the emptying of a large-scale pipeline by pressurized air. Proc. Est. Acad. Sci. 2015, 64, 8.spa
dcterms.bibliographicCitationTijsseling, A.S.; Hou, Q.; Bozkuş, Z.; Laanearu, J. Improved one-dimensional models for rapid emptying and filling of pipelines. J. Press. Vessel Technol. 2016, 138, 031301.spa
dcterms.bibliographicCitationCoronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water 2017, 9, 98.spa
dcterms.bibliographicCitationFuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Iglesias-Rey, P.L.; Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction. J. Hydraul. Res. 2019, 57, 318–326spa
dcterms.bibliographicCitationRomero, G.; Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Ponz-Carcelén, R.; Biel-Sanchis, F. Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations. Urban Water J. 2020, 17, 568–575.spa
dcterms.bibliographicCitationBesharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water J. 2018, 15, 769–779.spa
dcterms.bibliographicCitationHurtado-Misal, A.D.; Hernández-Sanjuan, D.; Coronado-Hernández, O.E.; Espinoza-Román, H.; Fuertes-Miquel, V.S. Analysis of Sub-Atmospheric Pressures during Emptying of an Irregular Pipeline without an Air Valve Using a 2D CFD Model. Water 2021, 13, 2526.spa
dcterms.bibliographicCitationPaternina-Verona, D.A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S. Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water J. 2022, 19, 569–578.spa
dcterms.bibliographicCitationPaternina-Verona, D.A.; Flórez-Acero, L.C.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Fuertes-Miquel, V.S.; Ramos, H.M. Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air. Urban Water J. 2023, 20, 1–12.spa
dcterms.bibliographicCitationPaternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Three-Dimensional Analysis of Air-Admission Orifices in Pipelines during Hydraulic Drainage Events. Sustainability 2022, 14, 14600.spa
dcterms.bibliographicCitationPaternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Fuertes-Miquel, V.S.; Ramos, H.M. Rapid Filling Analysis with an Entrapped Air Pocket in Water Pipelines Using a 3D CFD Model. Water 2023, 15, 834.spa
dcterms.bibliographicCitationGreenshields, C.; Weller, H. Notes on Computational Fluid Dynamics: General Principles; CFD Direct Ltd.: Reading, UK, 2022.spa
dcterms.bibliographicCitationHirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225.spa
dcterms.bibliographicCitationBombardelli, F.A.; Hirt, C.; García, M.H.; Matthews, B.; Fletcher, C.; Partridge, A.; Vasquez, S. Computations of curved free surface water flow on spiral concentrators. J. Hydraul. Eng. 2001, 127, 629–631.spa
dcterms.bibliographicCitationMenter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605spa
dcterms.bibliographicCitationMenter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 2009, 23, 305–316.spa
dcterms.bibliographicCitationMenter, F.; Esch, T. Elements of industrial heat transfer predictions. In Proceedings of the 16th Brazilian Congress of Mechanical Engineering (COBEM), Uberlandia, Brazil, 26–30 November 2001; Volume 109, p. 650.spa
dcterms.bibliographicCitationHuang, B.; Fan, M.; Liu, J.; Zhu, D.Z. CFD Simulation of Air–Water Interactions in Rapidly Filling Horizontal Pipe with Entrapped Air. In Proceedings of the World Environmental and Water Resources Congress 2021, Virtually, 7–11 June 2021; pp. 495–507spa
dcterms.bibliographicCitationZhou, L.; Wang, H.; Karney, B.; Liu, D.; Wang, P.; Guo, S. Dynamic behavior of entrapped air pocket in a water filling pipeline. J. Hydraul. Eng. 2018, 144, 04018045.spa
dcterms.bibliographicCitationAguirre-Mendoza, A.M.; Oyuela, S.; Espinoza-Román, H.G.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Paternina-Verona, D.A. 2D CFD Modeling of Rapid Water Filling with Air Valves Using OpenFOAM. Water 2021, 13, 3104spa
dcterms.bibliographicCitationAguirre-Mendoza, A.M.; Paternina-Verona, D.A.; Oyuela, S.; Coronado-Hernández, O.E.; Besharat, M.; Fuertes-Miquel, V.S.; Iglesias-Rey, P.L.; Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines. Water 2022, 14, 888.spa
dcterms.bibliographicCitationRomero, G.; Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Ponz-Carcelén, R.; Biel-Sanchis, F. Transient phenomena generated in emptying operations in large-scale hydraulic pipelines. Water 2020, 12, 2313spa
dcterms.bibliographicCitationZhou, L.; Liu, D.Y.; Ou, C.Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model. Eng. Appl. Comput. Fluid Mech. 2011, 5, 127–140.spa
dcterms.bibliographicCitationMartins, N.M.; Delgado, J.N.; Ramos, H.M.; Covas, D.I. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. J. Hydraul. Res. 2017, 55, 506–519.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/app13137727
dc.subject.keywordsEmptying processspa
dc.subject.keywordsMathematical modelspa
dc.subject.keywordsComputational fluid dynamics (CFD)spa
dc.subject.keywordsNumerical modellingspa
dc.subject.keywordsTrapped airspa
dc.subject.keywordsPipelinesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.