Mostrar el registro sencillo del ítem
Different Experimental and Numerical Models to Analyse Emptying Processes in Pressurised Pipes with Trapped Air
dc.contributor.author | Paternina-Verona, Duban A | |
dc.contributor.author | Coronado-Hernández, Oscar E. | |
dc.contributor.author | Espinoza-Román, Héctor G. | |
dc.contributor.author | Fuertes-Miquel, Vicente S. | |
dc.contributor.author | Ramos, Helena M. | |
dc.date.accessioned | 2023-08-14T17:56:14Z | |
dc.date.available | 2023-08-14T17:56:14Z | |
dc.date.issued | 2023-06-29 | |
dc.date.submitted | 2023-08-14 | |
dc.identifier.citation | Paternina-Verona, Duban A., Oscar E. Coronado-Hernández, Hector G. Espinoza-Román, Vicente S. Fuertes-Miquel, and Helena M. Ramos. 2023. "Different Experimental and Numerical Models to Analyse Emptying Processes in Pressurised Pipes with Trapped Air" Applied Sciences 13, no. 13: 7727. https://doi.org/10.3390/app13137727 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12448 | |
dc.description.abstract | In hydraulic engineering, some researchers have developed different mathematical and numerical tools for a better understanding of the physical interaction between water flow in pipes with trapped air during emptying processes, where they have made contributions on the use of simple and complex models in different application cases. In this article, a comparative study of different experimental and numerical models existing in the literature for the analysis of trapped air in pressurised pipelines subjected to different scenarios of emptying processes is presented, where different authors have develope, experimental, one-dimensional mathematical and complex computational fluid dynamics (CFD) models (two-dimensional and three-dimensional) to understand the level of applicability of these models in different hydraulic scenarios, from the physical and computational point of view. In general, experimental, mathematical and CFD models had maximum Reynolds numbers ranging from 2670 to 20,467, and it was possible to identify that the mathematical models offered relevant numerical information in a short simulation time on the order of seconds. However, there are restrictions to visualise some complex hydraulic and thermodynamic phenomena that CFD models are able to illustrate in detail with a numerical resolution similar to the mathematical models, and these require simulation times of hours or days. From this research, it was concluded that the knowledge of the information offered by the different models can be useful to hydraulic engineers to identify physical and numerical elements present in the air–water interaction and computational conditions necessary for the development of models that help decision-making in the field of hydraulics of pressurised pipelines. | spa |
dc.format.extent | 26 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Applied Sciences - Vol. 13 No. 13 (2023) | spa |
dc.title | Different Experimental and Numerical Models to Analyse Emptying Processes in Pressurised Pipes with Trapped Air | spa |
dcterms.bibliographicCitation | Chosie, C.D.; Hatcher, T.M.; Vasconcelos, J.G. Experimental and numerical investigation on the motion of discrete air pockets in pressurized water flows. J. Hydraul. Eng. 2014, 140, 04014038 | spa |
dcterms.bibliographicCitation | AWWA. Air Release, Air/Vacuum Valves and Combination Air Valves (M51); American Water Works Association: Denver, CO, USA, 2016. | spa |
dcterms.bibliographicCitation | Lauchlan, C.; Escarameia, M.; May, R.; Burrows, R.; Gahan, C. Air in Pipelines—A Literature Review; Report SR; HR Wallingford: Wallingford, UK, 2005; Volume 649 | spa |
dcterms.bibliographicCitation | Martin, C.S. Entrapped air in pipelines. In Proceedings of the Second International Conference on Pressure Surges, London, UK, 22–24 September 1976 | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Mora-Meliá, D.; Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: A literature review. Urban Water J. 2019, 16, 299–311 | spa |
dcterms.bibliographicCitation | Coronado Hernández, Ó.E. Transient Phenomena during the Emptying Process of Water in Pressurized Pipelines. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2019. | spa |
dcterms.bibliographicCitation | Besharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. J. Hydraul. Res. 2019, 58, 553–565 | spa |
dcterms.bibliographicCitation | Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Aguirre-Mendoza, A.M.; Espinoza-Román, H.G.; Fuertes-Miquel, V.S. Three-dimensional simulation of transient flows during the emptying of pipes with entrapped air. J. Hydraul. Eng. 2023, 149, 04023007. | spa |
dcterms.bibliographicCitation | Fuertes, V. Hydraulic Transients with Entrapped Air Pockets. Ph.D. Thesis, Department of Hydraulic Engineering, Polytechnic University of Valencia, Editorial Universitat Politècnica de València, Valencia, Spain, 2001 | spa |
dcterms.bibliographicCitation | Zhou, L.; Liu, D.; Karney, B. Investigation of hydraulic transients of two entrapped air pockets in a water pipeline. J. Hydraul. Eng. 2013, 139, 949–959. | spa |
dcterms.bibliographicCitation | Zhou, L.; Liu, D.; Karney, B.; Wang, P. Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pockets. J. Hydraul. Eng. 2013, 139, 1041–1051. | spa |
dcterms.bibliographicCitation | Zhou, L.; Pan, T.; Wang, H.; Liu, D.; Wang, P. Rapid air expulsion through an orifice in a vertical water pipe. J. Hydraul. Res. 2019, 57, 307–317 | spa |
dcterms.bibliographicCitation | Zhou, L.; Lu, Y.; Karney, B.; Wu, G.; Elong, A.; Huang, K. Energy dissipation in a rapid filling vertical pipe with trapped air. J. Hydraul. Res. 2023, 61, 120–132. | spa |
dcterms.bibliographicCitation | Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vučković, S.; Hou, Q.; Tijsseling, A.S.; Anderson, A.; van’t Westende, J.M. Emptying of large-scale pipeline by pressurized air. J. Hydraul. Eng. 2012, 138, 1090–1100 | spa |
dcterms.bibliographicCitation | Laanearu, J.; Hou, Q.; Annus, I.; Tijsseling, A.S. Water-column mass losses during the emptying of a large-scale pipeline by pressurized air. Proc. Est. Acad. Sci. 2015, 64, 8. | spa |
dcterms.bibliographicCitation | Tijsseling, A.S.; Hou, Q.; Bozkuş, Z.; Laanearu, J. Improved one-dimensional models for rapid emptying and filling of pipelines. J. Press. Vessel Technol. 2016, 138, 031301. | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water 2017, 9, 98. | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Iglesias-Rey, P.L.; Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction. J. Hydraul. Res. 2019, 57, 318–326 | spa |
dcterms.bibliographicCitation | Romero, G.; Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Ponz-Carcelén, R.; Biel-Sanchis, F. Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations. Urban Water J. 2020, 17, 568–575. | spa |
dcterms.bibliographicCitation | Besharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water J. 2018, 15, 769–779. | spa |
dcterms.bibliographicCitation | Hurtado-Misal, A.D.; Hernández-Sanjuan, D.; Coronado-Hernández, O.E.; Espinoza-Román, H.; Fuertes-Miquel, V.S. Analysis of Sub-Atmospheric Pressures during Emptying of an Irregular Pipeline without an Air Valve Using a 2D CFD Model. Water 2021, 13, 2526. | spa |
dcterms.bibliographicCitation | Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S. Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water J. 2022, 19, 569–578. | spa |
dcterms.bibliographicCitation | Paternina-Verona, D.A.; Flórez-Acero, L.C.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Fuertes-Miquel, V.S.; Ramos, H.M. Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air. Urban Water J. 2023, 20, 1–12. | spa |
dcterms.bibliographicCitation | Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Three-Dimensional Analysis of Air-Admission Orifices in Pipelines during Hydraulic Drainage Events. Sustainability 2022, 14, 14600. | spa |
dcterms.bibliographicCitation | Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Fuertes-Miquel, V.S.; Ramos, H.M. Rapid Filling Analysis with an Entrapped Air Pocket in Water Pipelines Using a 3D CFD Model. Water 2023, 15, 834. | spa |
dcterms.bibliographicCitation | Greenshields, C.; Weller, H. Notes on Computational Fluid Dynamics: General Principles; CFD Direct Ltd.: Reading, UK, 2022. | spa |
dcterms.bibliographicCitation | Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. | spa |
dcterms.bibliographicCitation | Bombardelli, F.A.; Hirt, C.; García, M.H.; Matthews, B.; Fletcher, C.; Partridge, A.; Vasquez, S. Computations of curved free surface water flow on spiral concentrators. J. Hydraul. Eng. 2001, 127, 629–631. | spa |
dcterms.bibliographicCitation | Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605 | spa |
dcterms.bibliographicCitation | Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 2009, 23, 305–316. | spa |
dcterms.bibliographicCitation | Menter, F.; Esch, T. Elements of industrial heat transfer predictions. In Proceedings of the 16th Brazilian Congress of Mechanical Engineering (COBEM), Uberlandia, Brazil, 26–30 November 2001; Volume 109, p. 650. | spa |
dcterms.bibliographicCitation | Huang, B.; Fan, M.; Liu, J.; Zhu, D.Z. CFD Simulation of Air–Water Interactions in Rapidly Filling Horizontal Pipe with Entrapped Air. In Proceedings of the World Environmental and Water Resources Congress 2021, Virtually, 7–11 June 2021; pp. 495–507 | spa |
dcterms.bibliographicCitation | Zhou, L.; Wang, H.; Karney, B.; Liu, D.; Wang, P.; Guo, S. Dynamic behavior of entrapped air pocket in a water filling pipeline. J. Hydraul. Eng. 2018, 144, 04018045. | spa |
dcterms.bibliographicCitation | Aguirre-Mendoza, A.M.; Oyuela, S.; Espinoza-Román, H.G.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Paternina-Verona, D.A. 2D CFD Modeling of Rapid Water Filling with Air Valves Using OpenFOAM. Water 2021, 13, 3104 | spa |
dcterms.bibliographicCitation | Aguirre-Mendoza, A.M.; Paternina-Verona, D.A.; Oyuela, S.; Coronado-Hernández, O.E.; Besharat, M.; Fuertes-Miquel, V.S.; Iglesias-Rey, P.L.; Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines. Water 2022, 14, 888. | spa |
dcterms.bibliographicCitation | Romero, G.; Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Ponz-Carcelén, R.; Biel-Sanchis, F. Transient phenomena generated in emptying operations in large-scale hydraulic pipelines. Water 2020, 12, 2313 | spa |
dcterms.bibliographicCitation | Zhou, L.; Liu, D.Y.; Ou, C.Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model. Eng. Appl. Comput. Fluid Mech. 2011, 5, 127–140. | spa |
dcterms.bibliographicCitation | Martins, N.M.; Delgado, J.N.; Ramos, H.M.; Covas, D.I. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. J. Hydraul. Res. 2017, 55, 506–519. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/app13137727 | |
dc.subject.keywords | Emptying process | spa |
dc.subject.keywords | Mathematical model | spa |
dc.subject.keywords | Computational fluid dynamics (CFD) | spa |
dc.subject.keywords | Numerical modelling | spa |
dc.subject.keywords | Trapped air | spa |
dc.subject.keywords | Pipelines | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.