Mostrar el registro sencillo del ítem
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater
dc.contributor.author | Castro Vargas, Adriana | |
dc.contributor.author | Paul, Shiladitya | |
dc.coverage.spatial | United Kingdom & Colombia | |
dc.date.accessioned | 2023-07-31T16:28:48Z | |
dc.date.available | 2023-07-31T16:28:48Z | |
dc.date.issued | 2023-07-14 | |
dc.date.submitted | 2023-07-31 | |
dc.identifier.citation | Adriana Castro-Vargas and Shiladitya Paul, 'In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater'. Electrochimica Acta, Vol. 464, October 2023, 142847. https://doi.org/10.1016/j.electacta.2023.142847 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12444 | |
dc.description.abstract | This paper presents the results of a study that combined electrochemical monitoring with in-situ imaging of Thermal Spray Aluminium (TSA) coating in synthetic seawater at room temperature in quiescent condition. The coatings were obtained by twin-wire arc spraying of 1050 aluminium alloy on S355 carbon steel substrate. TSA-coated steel samples were evaluated by analysing sequential images of the surface: (i) without defect; (ii) with defects machined before immersion (5% and 30% of exposed steel surface); (iii) with a defect machined after 35 d of immersion (10% of exposed steel surface); and (iv) after the removal of calcareous deposits formed on top of the exposed steel surface. Variations in the coating and the defect were captured and correlated with the evolution of Open Circuit Potential (OCP) during 35 days of full immersion. Determination of calcareous deposit formation time on the top of exposed steel was also carried out. The defect created before immersion impacted the cathodic reactions, resulting in a faster formation of corrosion products and calcareous deposits compared to the defect machined after exposure to synthetic seawater. The penetration time of the electrolyte in the coating and the activation of the surface are key in the protection mechanism and the kinetics of corrosion. | spa |
dc.description.sponsorship | UTB, MInciencias, Lloy's Register Foundation | spa |
dc.format.extent | 10 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Electrochimica Acta - vol. 464 (2023) | spa |
dc.title | In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater | spa |
dcterms.bibliographicCitation | [1] W.H. Thomason, Offshore Corrosion Protection With Thermal-Sprayed Aluminum, Offshore Technology Conference Houston, Texas, 1985, https://doi.org/10.4043/4971-MS. | spa |
dcterms.bibliographicCitation | [2] D.K.-K. Tiong, H. Pit, Experiences on Thermal Spray Aluminum (TSA) Coating on Offshore Structures, CORROSION 2004, OnePetro, 2004. | spa |
dcterms.bibliographicCitation | [3] K.P. Fischer, W.H. Thomason, T. Rosbrook, J. Murali, Performance history of thermal-sprayed aluminum coatings in offshore service, Materials performance, 34 (1995) 27-35. | spa |
dcterms.bibliographicCitation | [4] D.N. Veritas, DNV-RP-B401 Cathodic Protection Design, Recommended Practice, Norway: Det Norske Veritas, 2005 | spa |
dcterms.bibliographicCitation | [5] A. Castro-Vargas, S. Gill, S. Paul, Effect of Corrosion Products and Deposits on the Damage Tolerance of TSA-Coated Steel in Artificial Seawater, Surfaces, 5 (2022) 113-126, https://doi.org/10.3390/surfaces5010005. | spa |
dcterms.bibliographicCitation | [6] R. Grinon-Echaniz, P. Refait, M. Jeannin, R. Sabot, S. Paul, R. Thornton, Study of cathodic reactions in defects of thermal spray aluminium coatings on steel in artificial seawater, Corrosion Science, 187 (2021) 109514, https://doi.org/10.1016/j.corsci.2021.109514. | spa |
dcterms.bibliographicCitation | [7] R. Grinon-Echaniz, S. Paul, R. Thornton, P. Refait, M. Jeannin, A. Rodriguez, Prediction of thermal spray coatings performance in marine environments by combination of laboratory and field tests, Coatings, 11 (2021) 320, https://doi.org/10.3390/coatings11030320 | spa |
dcterms.bibliographicCitation | [8] R.G. Echaniz, S. Paul, R. Thornton, Effect of seawater constituents on the performance of thermal spray aluminum in marine environments, Materials and Corrosion, 70 (2019) 996-1004, https://doi.org/10.1002/maco.201810764 | spa |
dcterms.bibliographicCitation | [9] S. Paul, Cathodic protection of offshore structures by extreme damage tolerant sacrificial coatings, CORROSION 2018, OnePetro, 2018 | spa |
dcterms.bibliographicCitation | [10] S. Paul, Behavior of damaged thermally sprayed aluminum (TSA) in aerated and deaerated seawater, CORROSION 2019, OnePetro, 2019. | spa |
dcterms.bibliographicCitation | [11] B. Syrek-Gerstenkorn, S. Paul, A.J. Davenport, Sacrificial thermally sprayed aluminium coatings for marine environments: A review, Coatings, 10 (2020) 267, https://doi.org/10.3390/coatings10030267. | spa |
dcterms.bibliographicCitation | [12] Y. Yang, J.D. Scantlebury, E.V. Koroleva, A study of calcareous deposits on cathodically protected mild steel in artificial seawater, Metals, 5 (2015) 439-456, https://doi.org/10.3390/met5010439. | spa |
dcterms.bibliographicCitation | [13] J.F. Yan, R.E. White, R. Griffin, Parametric studies of the formation of calcareous deposits on cathodically protected steel in seawater, Journal of the Electrochemical Society, 140 (1993) 1275. | spa |
dcterms.bibliographicCitation | [14] W.R. Smith, S. Paul, Natural deposit coatings on steel during cathodic protection and hydrogen ingress, Coatings, 5 (2015) 816-829, https://doi.org/10.3390/coatings5040816. | spa |
dcterms.bibliographicCitation | [15] C. Barchiche, C. Deslouis, D. Festy, O. Gil, P. Refait, S. Touzain, B. Tribollet, Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg (II), Electrochimica Acta, 48 (2003) 1645-1654, https://doi.org/10.1016/S0013-4686(03)00075-6. | spa |
dcterms.bibliographicCitation | [16] N. Ce, S. Paul, The effect of temperature and local pH on calcareous deposit formation in damaged thermal spray aluminum (TSA) coatings and its implication on corrosion mitigation of offshore steel structures, Coatings, 7 (2017) 52, https://doi.org/10.3390/coatings7040052. | spa |
dcterms.bibliographicCitation | [17] B. Syrek-Gerstenkorn, S. Paul, A.J. Davenport, Use of thermally sprayed aluminium (TSA) coatings to protect offshore structures in submerged and splash zones, Surface and Coatings Technology, 374 (2019) 124-133, https://doi.org/10.1016/j.surfcoat.2019.04.048. | spa |
dcterms.bibliographicCitation | [18] H.-S. Lee, J.K. Singh, J.H. Park, Pore blocking characteristics of corrosion products formed on Aluminum coating produced by arc thermal metal spray process in 3.5 wt.% NaCl solution, Construction and Building Materials, 113 (2016) 905-916, https://doi.org/10.1016/j.conbuildmat.2016.03.135. | spa |
dcterms.bibliographicCitation | [19] S. Paul, Hydrogen in aluminium-coated steels exposed to synthetic seawater, Surfaces, 3 (2020) 282-300, https://doi.org/10.3390/surfaces3030021. | spa |
dcterms.bibliographicCitation | [20] S. Pedersen, J. Liniger, F.F. Sørensen, M. von Benzon, On Marine Growth Removal on Offshore Structures, OCEANS 2022-Chennai, IEEE, 2022, pp. 1-6, 10.1109/OCEANSChennai45887.2022.9775498. | spa |
dcterms.bibliographicCitation | [21] E. Abedi Esfahani, H. Salimijazi, M.A. Golozar, J. Mostaghimi, L. Pershin, Study of corrosion behavior of arc sprayed aluminum coating on mild steel, Journal of thermal spray technology, 21 (2012) 1195-1202, https://doi.org/10.1007/s11666-012-9810-x. | spa |
dcterms.bibliographicCitation | [22] A. Gericke, M. Hauer, B. Ripsch, M. Irmer, J. Nehlsen, K.-M. Henkel, Fatigue Strength of Structural Steel-Welded Connections with Arc-Sprayed Aluminum Coatings and Corrosion Behavior of the Corresponding Coatings in Sea Water, Journal of Marine Science and Engineering, 10 (2022) 1731, https://doi.org/10.3390/jmse10111731. | spa |
dcterms.bibliographicCitation | [23] A. López-Ortega, R. Bayón, J. Arana, Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater, Surface and Coatings Technology, 349 (2018) 1083-1097, https://doi.org/10.1016/j.surfcoat.2018.06.089. | spa |
dcterms.bibliographicCitation | [24] S. Paul, D. Harvey, Determination of the Corrosion Rate of Thermally Spayed Aluminum (TSA) in Simulated Marine Service, CORROSION 2020, OnePetro, 2020. | spa |
dcterms.bibliographicCitation | [25] ISO, 8501-1, Preparation of steel substrates before application of paints and related products—Visual assessment of surface cleanliness—Part 1: Rust grades and preparation grades of uncoated steel substrates and of steel substrates after overall removal of previous coatings, 2007. | spa |
dcterms.bibliographicCitation | [26] ASTM D1141-98, Standard practice for the preparation of substitute ocean water, ASTM International, 2013. | spa |
dcterms.bibliographicCitation | [27] D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings, Journal of Thermal Spray Technology, 28 (2019) 598-644. | spa |
dcterms.bibliographicCitation | [28] M. Smith, Comparing cold spray with thermal spray coating technologies, The cold spray materials deposition process, Elsevier2007, pp. 43-61, https://doi.org/10.1533/9781845693787.1.43. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | doi.org/10.1016/j.electacta.2023.142847 | |
dc.subject.keywords | Thermal spray aluminium | spa |
dc.subject.keywords | Synthetic seawater | spa |
dc.subject.keywords | In-situ Opical Analysis | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.