Mostrar el registro sencillo del ítem
Polarization study in Newtonian telescope components for depolarization parameter correction in atmospheric LiDAR
dc.contributor.author | Sanchez Barrera, Estiven | |
dc.contributor.author | Torres Fiesco, Nairo | |
dc.contributor.author | Reina Estupiñán, John Henry | |
dc.contributor.other | Reina Estupiñán, John Henry | |
dc.date.accessioned | 2023-07-27T20:21:02Z | |
dc.date.available | 2023-07-27T20:21:02Z | |
dc.date.issued | 2023-06-12 | |
dc.date.submitted | 2023-06-12 | |
dc.identifier.citation | Estiven Sánchez Barrera, Nairo Torres Fiesco, John Henry Reina Estupiñán, "Polarization study in Newtonian telescope components for depolarization parameter correction in atmospheric LiDAR," Proc. SPIE 12537, Laser Radar Technology and Applications XXVIII, 1253708 (12 June 2023); doi: 10.1117/12.2663690 | spa |
dc.identifier.issn | 0277-786X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12441 | |
dc.description.abstract | In the present work, an experimental system is implemented, and a theoretical model is built that allows quanti fying atmospheric depolarization in the city of Santiago de Cali, Colombia. The experimental setup uses a LiDAR coupled to a Polarotor, which allows the separation of the backscattered light into its parallel and perpendicular polarization components. This device allows the use of a single photomultiplier tube, thus facilitating calibration procedures. The theoretical model is based on the Mueller formalism and considers the contribution of each op tical element of the LiDAR system on the polarization of the backscattered light. This is achieved by assigning to each element a Mueller matrix and subsequently calculating the matrix associated with the whole assembly. The contribution of the optical elements of the system on the depolarization parameter d is determined. The corrections to the signals obtained are established, so that the data is not altered by the particularities of the assembly used. | spa |
dc.description.sponsorship | Universidad Tecnológica de Bolívar | spa |
dc.format.extent | 9 | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Proceedings of SPIE, the International Society for Optical Engineering | spa |
dc.title | Polarization study in Newtonian telescope components for depolarization parameter correction in atmospheric LiDAR | spa |
dcterms.bibliographicCitation | Eichinger, V. A. K. . W. E., [Elastic Lidar], John Wiley & Sons, Ltd (2005). | spa |
dcterms.bibliographicCitation | Glennie, C., Carter, W., Shrestha, R., and Dietrich, W., “Geodetic imaging with airborne lidar: The earth’s surface revealed,” Reports on progress in physics. Physical Society (Great Britain) 76, 086801 (07 2013). | spa |
dcterms.bibliographicCitation | Chase, A. S. Z. and Chase, Diane Z.and Chase, A. F., [LiDAR for Archaeological Research and the Study of Historical Landscapes ], 89–100, Springer International Publishing, Cham (2017). | spa |
dcterms.bibliographicCitation | Burton, D., Dunlap, D., Wood, L., and Flaig, P., “Lidar intensity as a remote sensor of rock properties,” Journal of Sedimentary Research - J SEDIMENT RES 81 (05 2011). | spa |
dcterms.bibliographicCitation | Milonni, P. W., “Lidar. range-resolved optical remote sensing of the atmosphere, in the springer series in optical sciences, vol. 102, edited by claus weitkamp,” Contemporary Physics 50(5), 19–40 (2009). | spa |
dcterms.bibliographicCitation | et al, T. M., “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” Journal of Geophysical Research: Atmospheres 104(D24), 31781–31792 (1999). | spa |
dcterms.bibliographicCitation | Rojas, J. C., Implementaci´on de un sistema LiDAR el´astico para la observaci´on de la din´amica de aerosoles sobre el ´area urbana de Cali, Master’s thesis, Universidad del Valle, Escuela de Ingenier´ıa de los Recursos Naturales y el Ambiente (EIDENAR) (6 2019). | spa |
dcterms.bibliographicCitation | D.R. Vivas, E. S´anchez, J. R., “Deep learning the atmospheric boundary layer height.,” Remote Sensing (2020). | spa |
dcterms.bibliographicCitation | Hecht, E., [Optics ], Pearson Education, Incorporated (2017). | spa |
dcterms.bibliographicCitation | Gimmestad, G. G., “Reexamination of depolarization in lidar measurements,” Appl. Opt. 47, 3795–3802 (Jul 2008). | spa |
dcterms.bibliographicCitation | Di, H., Hua, D., Yan, L., Hou, X., and Wei, X., “Polarization analysis and corrections of different telescopes in polarization lidar,” Appl. Opt. 54, 389–397 (Jan 2015) | spa |
dcterms.bibliographicCitation | Sanchez Almeida, J. and Mart´ınez-Pillet, V., “Instrumental polarization in the focal plane of telescopes,” Astronomy and Astrophysics 260, 543–555 (06 1992). | spa |
dcterms.bibliographicCitation | Malitson, I. H., “Interspecimen comparison of the refractive index of fused silica∗,†,” J. Opt. Soc. Am. 55, 1205–1209 (Oct 1965). | spa |
dcterms.bibliographicCitation | et al, F., “Depolarization ratio profiling at several wavelengths in pure saharan dust during samum 2006,” Tellus B 61, 165 – 179 (02 2009) | spa |
dcterms.bibliographicCitation | Freudenthaler, V., “About the effects of polarising optics on lidar signals and the δ90 calibration,” Atmo spheric Measurement Techniques 9(9), 4181–4255 (2016). | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.subject.keywords | LiDAR, | spa |
dc.subject.keywords | Depolarization, | spa |
dc.subject.keywords | Aerosols, | spa |
dc.subject.keywords | Atmospheric, | spa |
dc.subject.keywords | Polarization models | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_8544 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.