Mostrar el registro sencillo del ítem
Equivalence of categories of simple Lie algebras in positive characteristic
dc.contributor.author | Guevara, Carlos Rafael | |
dc.contributor.author | Quintero Vanegas, Elkin O. | |
dc.contributor.author | Benítez Monsalve, Germán Alfonso | |
dc.coverage.spatial | 2022-2023, COLOMBIA, CARTAGENA DE INDIAS | |
dc.date.accessioned | 2023-07-27T19:43:18Z | |
dc.date.available | 2023-07-27T19:43:18Z | |
dc.date.issued | 2022-07-18 | |
dc.date.submitted | 2023-07-27 | |
dc.identifier.citation | Monsalve, G. B., Guevara, C. R. P., & Vanegas, E. Q. (2023). Equivalence of categories of simple Lie algebras in positive characteristic. Proyecciones (Antofagasta, On line), 42(4), 815-831. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12440 | |
dc.description.abstract | In this paper we first study some properties of the finite-dimensional simple restricted Lie algebras. In the literature is found a one-to-one correspondence between them and finite-dimensional simple Lie algebras over a field of positive characteristic. Motivated by this fact, we give a one-to-one correspondence between their morphisms, which allow us to conclude that such categories are equivalent | spa |
dc.format.extent | 17 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Proyecciones Journal of Mathematics | spa |
dc.title | Equivalence of categories of simple Lie algebras in positive characteristic | spa |
dcterms.bibliographicCitation | R. E. Block. The classification problem for simple Lie algebras of characteristic p. In: D. Winter, D. (eds) Lie Algebras and Related Topics. Lecture Notes in Mathematics, 933. Berlin: Springer, 1982. doi: 10.1007/BFb0093351 | spa |
dcterms.bibliographicCitation | R. E. Block, and R. L. Wilson, “The restricted simple Lie algebras are of classical or Cartan type”, Proceedings of the National Academy of Sciences, vol. 81, no. 16, pp. 5271-5274, 1984. doi: 10.1073/pnas.81.16.5271 | spa |
dcterms.bibliographicCitation | R. E. Block, and R. L. Wilson, “Classification of the restricted simple Lie algebras”, Journal of Algebra, vol. 114, no. 1, pp. 115-259, 1988. doi: 10.1016/0021-8693(88)90216-5 | spa |
dcterms.bibliographicCitation | N. Jacobson, Lie algebras. Interscience Tracts in Pure and Applied Mathematics, no. 10 Interscience New York: John Wiley & Sons, Inc., 1962 | spa |
dcterms.bibliographicCitation | V. G. Kac, “Description of the filtered Lie algebras with which graded Lie algebras of Cartan type are associated”, Mathematics of the USSR-Izvestiya, vol. 38, pp. 800-834, 1974. doi: 10.1070/IM1974v008n04ABEH002128 | spa |
dcterms.bibliographicCitation | A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. I. Sandwich elements”, Journal of Algebra, vol. 189, no. 2, 419-480, 1997. doi: 10.1006/jabr.1996.6861 | spa |
dcterms.bibliographicCitation | A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. II. Exceptional roots”, Journal of Algebra, vol. 216, no. 1, pp. 190-301, 1999. doi: 10.1006/jabr.1998.7746 | spa |
dcterms.bibliographicCitation | A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. III. The toral rank 2 case”, Journal of Algebra, vol. 242, no. 1, pp. 236-337, 2001. doi: 10.1006/jabr.2001.8806 | spa |
dcterms.bibliographicCitation | A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. IV. Solvable and classical roots”, Journal of Algebra, vol. 278, no. 2, pp. 766-833, 2004. doi: 10.1016/j.jalgebra.2003.10.028 | spa |
dcterms.bibliographicCitation | A. Premet, and H. Strade, Classification of finite dimensional simple Lie algebras in prime characteristics. In: Representations of algebraicgroups, quantum groups, and Lie algebras. Contemporary Mathematics, vol. 413. Providence, RI: American Mathematical Society, 2006 | spa |
dcterms.bibliographicCitation | A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. V. The non-Melikian case”, Journal of Algebra, vol. 314, no. 2, pp. 664-692, 2007. doi: 10.1016/j.jalgebra.2007.02.059 | spa |
dcterms.bibliographicCitation | A. Premet, and H. Strade, “Simple Lie algebras of small characteristic. VI. Completion of the classification”, Journal of Algebra, vol. 320, no. 9, pp. 3559-3604, 2008. doi: 10.1016/j.jalgebra.2008.08.012 | spa |
dcterms.bibliographicCitation | S. Skryabin, “Toral rank one simple Lie algebras of low characteristics”, Journal of Algebra, vol. 200, no. 2, pp. 650-700, 1998. doi: 10.1006/jabr.1997.7231 | spa |
dcterms.bibliographicCitation | H. Strade, “The classification of the simple modular Lie algebras. III. Solution of the classical case”, Annals of Mathematics, vol. 133, no. 3, pp. 577-604, 1991. doi: 10.2307/2944320 | spa |
dcterms.bibliographicCitation | H. Strade, “The classification of the simple modular Lie algebras. II. The toral structure”, Journal of Algebra, vol. 151, no. 2, pp. 425-475, 1992. doi: 10.1016/0021-8693(92)90122-3 | spa |
dcterms.bibliographicCitation | H. Strade, Simple Lie algebras over fields of positive characteristic. vol. I: Structure theory. De Gruyter Expositions in Mathematics, 38. Walter de Gruyter & Co., Berlin, 2004 | spa |
dcterms.bibliographicCitation | H. Strade, and R. Farnsteiner, Modular Lie algebras and their representations. Monographs and Textbooks in Pure and Applied Mathematics, 116. Marcel Dekker, Inc., New York, 1988 | spa |
dcterms.bibliographicCitation | H. Strade, and R. L. Wilson, “Classification of simple Lie algebras over algebraically closed fields of prime characteristic”, Bulletin of the American Mathematical Society, vol. 24, no. 2, pp. 357-362, 1991. | spa |
dcterms.bibliographicCitation | F. Viviani, “Infinitesimal deformations of restricted simple Lie algebras. I”, Journal of Algebra, vol. 320, no. 12, pp. 4102-4131, 2008. doi: 10.1016/j.jalgebra.2008.08.022 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.22199/issn.0717-6279-5335 | |
dc.subject.keywords | Restricted Lie algebras, | spa |
dc.subject.keywords | Restricted Simple Lie algebras, | spa |
dc.subject.keywords | Simple restricted Lie algebras, | spa |
dc.subject.keywords | Equivalence of categories | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.