Mostrar el registro sencillo del ítem

dc.contributor.authorGarrido, Víctor Manuel
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorMedina-Quesada, Ángeles
dc.contributor.authorHernández, Jesús C
dc.date.accessioned2023-07-25T12:10:35Z
dc.date.available2023-07-25T12:10:35Z
dc.date.issued2022-11-10
dc.date.submitted2023-07
dc.identifier.citationGarrido, V.M.; Montoya, O.D.; Medina-Quesada, Á.; Hernández, J.C. Optimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approach. Sensors 2022, 22, 8676. https://doi.org/10.3390/s22228676spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12430
dc.description.abstractThis paper deals with the problem regarding the optimal siting and sizing of distribution static compensators (D-STATCOMs) in electrical distribution networks to minimize the expected total annual operating costs. These costs are associated with the investments made in D-STATCOMs and expected energy losses costs. To represent the electrical behavior of the distribution networks, a power flow formulation is used which includes voltages, currents, and power as variables via incidence matrix representation. This formulation generates a mixed-integer nonlinear programming (MINLP) model that accurately represents the studied problem. However, in light of the complexities involved in solving this MINLP model efficiently, this research proposes a mixed-integer convex reformulation. Numerical results regarding the final annual operating costs of the network demonstrate that the proposed mixed-integer convex model is efficient for selecting and locating D-STATCOMs in distribution networks, with the main advantage that it is applicable to radial and meshed distribution grid configurations. A comparative analysis with respect to metaheuristic optimizers and convex approximations confirms the robustness of the proposed formulation. All numerical validations were conducted in the MATLAB programming environment with our own scripts (in the case of metaheuristics) and the CVX convex disciplined tool via the Gurobi solver. In addition, the exact MINLP model is solved using the GAMS software. © 2022 by the authors.spa
dc.format.extent15 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSensors - Vol. 22 No. 22 (2022)spa
dc.titleOptimal Reactive Power Compensation in Distribution Networks with Radial and Meshed Structures Using D-STATCOMs: A Mixed-Integer Convex Approachspa
dcterms.bibliographicCitationMishra, S., Das, D., Paul, S. A comprehensive review on power distribution network reconfiguration (2017) Energy Systems, 8 (2), pp. 227-284. Cited 118 times. http://www.springer.com/engineering/energy+technology/journal/12667 doi: 10.1007/s12667-016-0195-7spa
dcterms.bibliographicCitationKarampelas, P., Ekonomou, L. (2016) Electricity Distribution. Cited 25 times. Springer, Berlin/Heidelberg, Germanyspa
dcterms.bibliographicCitationLavorato, M., Franco, J.F., Rider, M.J., Romero, R. Imposing radiality constraints in distribution system optimization problems (2012) IEEE Transactions on Power Systems, 27 (1), art. no. 5982115, pp. 172-180. Cited 411 times. doi: 10.1109/TPWRS.2011.2161349spa
dcterms.bibliographicCitationMontoya, O.D., Serra, F.M., De Angelo, C.H. On the efficiency in electrical networks with ac and dc operation technologies: A comparative study at the distribution stage (2020) Electronics (Switzerland), 9 (9), art. no. 1352, pp. 1-23. Cited 32 times. https://www.mdpi.com/2079-9292/9/9/1352/pdf doi: 10.3390/electronics9091352spa
dcterms.bibliographicCitationMa, Y., Tong, X., Zhou, X., Gao, Z. The review on distribution network reconfiguration (2017) Proceedings of the 29th Chinese Control and Decision Conference, CCDC 2017, art. no. 7978897, pp. 2292-2297. Cited 9 times. ISBN: 978-150904656-0 doi: 10.1109/CCDC.2017.7978897spa
dcterms.bibliographicCitationKhodr, H.M., Zerpa, I.J., De Oliveira-De Jesús, P.M., Matos, M.A. Optimal phase balancing in distribution system using mixed-integer linear programming (2006) 2006 IEEE PES Transmission and Distribution Conference and Exposition: Latin America, TDC'06, art. no. 4104582. Cited 18 times. ISBN: 1424402883; 978-142440288-5 doi: 10.1109/TDCLA.2006.311368spa
dcterms.bibliographicCitationOlabode, O.E., Okakwu, I.K., Alayande, A.S., Ajewole, T.O. A two-stage approach to shunt capacitor-based optimal reactive power compensation using loss sensitivity factor and cuckoo search algorithm (2020) Energy Storage, 2, p. e122. Cited 14 times.spa
dcterms.bibliographicCitationQuintana, E., Inga, E. Optimal Reconfiguration of Electrical Distribution System Using Heuristic Methods with Geopositioning Constraints (2022) Energies, 15 (15), art. no. 5317. Cited 5 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15155317spa
dcterms.bibliographicCitationHooshmand, E., Rabiee, A. Distribution feeder reconfiguration considering price-based demand response program (2019) Demand Response Application in Smart Grids: Operation Issues - Volume 2, pp. 95-117. http://dx.doi.org/10.1007/978-3-030-32104-8 ISBN: 978-303032104-8; 978-303032103-1 doi: 10.1007/978-3-030-32104-8_5spa
dcterms.bibliographicCitationGranada-Echeverri, M., Gallego-Rendón, R.A., López-Lezama, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm (2012) Ingeniería y Ciencia, 8, pp. 121-140. Cited 27 times.spa
dcterms.bibliographicCitationSiti, W., Jimoh, A., Nicolae, D. Phase load balancing in the secondary distribution network using a fuzzy logic and a combinatorial optimization based on the Newton Raphson (2009) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5788 LNCS, pp. 92-100. Cited 13 times. ISBN: 3642043933; 978-364204393-2 doi: 10.1007/978-3-642-04394-9_12spa
dcterms.bibliographicCitationSoltani, S.H., Rashidinejad, M., Abdollahi, A. Dynamic phase balancing in the smart distribution networks (2017) International Journal of Electrical Power and Energy Systems, 93, pp. 374-383. Cited 22 times. doi: 10.1016/j.ijepes.2017.06.016spa
dcterms.bibliographicCitationNguyen, T.T., Le, K.H., Phan, T.M., Duong, M.Q. An Effective Reactive Power Compensation Method and a Modern Metaheuristic Algorithm for Loss Reduction in Distribution Power Networks (2021) Complexity, 2021, art. no. 8346738. Cited 4 times. https://www.hindawi.com/journals/complexity/ doi: 10.1155/2021/8346738spa
dcterms.bibliographicCitationÁguila Téllez, A., López, G., Isaac, I., González, J.W. Optimal reactive power compensation in electrical distribution systems with distributed resources. Review (Open Access) (2018) Heliyon, 4 (8), art. no. e00746. Cited 48 times. http://www.journals.elsevier.com/heliyon/ doi: 10.1016/j.heliyon.2018.e00746spa
dcterms.bibliographicCitationDash, S.K., Mishra, S., Abdelaziz, A.Y. A Critical Analysis of Modeling Aspects of D-STATCOMs for Optimal Reactive Power Compensation in Power Distribution Networks (2022) Energies, 15 (19), art. no. 6908. Cited 2 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15196908spa
dcterms.bibliographicCitationMora-Burbano, J.A., Fonseca-Díaz, C.D., Montoya, O.D. Application of the SSA for Optimal Reactive Power Compensation in Radial and Meshed Distribution Using D-STATCOMs (Open Access) (2022) Algorithms, 15 (10), art. no. 345. Cited 4 times. www.mdpi.com/journal/algorithms/ doi: 10.3390/a15100345spa
dcterms.bibliographicCitationSirjani, R., Rezaee Jordehi, A. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review (Open Access) (2017) Renewable and Sustainable Energy Reviews, 77, pp. 688-694. Cited 100 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.04.035spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D., Hernández, J.C., Ramos-Paja, C.A., Perea-Moreno, A.-J. A Discrete-Continuous PSO for the Optimal Integration of D-STATCOMs into Electrical Distribution Systems by Considering Annual Power Loss and Investment Costs (2022) Mathematics, 10 (14), art. no. 2453. Cited 8 times. http://www.mdpi.com/journal/mathematics doi: 10.3390/math10142453spa
dcterms.bibliographicCitationGupta, A.R., Kumar, A. Impact of DG and D-STATCOM Placement on Improving the Reactive Loading Capability of Mesh Distribution System (2016) Procedia Technol, 25, pp. 676-683. Cited 16 times.spa
dcterms.bibliographicCitationDevi, S., Geethanjali, M. Optimal location and sizing of Distribution Static Synchronous Series Compensator using Particle Swarm Optimization (Open Access) (2014) International Journal of Electrical Power and Energy Systems, 62, pp. 646-653. Cited 40 times. doi: 10.1016/j.ijepes.2014.05.021spa
dcterms.bibliographicCitationMontoya, O.D., Garces, A., Gil-González, W. Minimization of the distribution operating costs with D-STATCOMS: A mixed-integer conic model (2022) Electric Power Systems Research, 212, art. no. 108346. Cited 6 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.108346spa
dcterms.bibliographicCitationFarivar, M., Low, S.H. Branch flow model: Relaxations and convexification-part i (Open Access) (2013) IEEE Transactions on Power Systems, 28 (3), art. no. 6507355, pp. 2554-2564. Cited 932 times. doi: 10.1109/TPWRS.2013.2255317spa
dcterms.bibliographicCitationGupta, A.R., Kumar, A. Optimal placement of D-STATCOM in distribution network using new sensitivity index with probabilistic load models (Open Access) (2015) 2015 2nd International Conference on Recent Advances in Engineering and Computational Sciences, RAECS 2015, art. no. 7453316. Cited 11 times. ISBN: 978-146738253-3 doi: 10.1109/RAECS.2015.7453316spa
dcterms.bibliographicCitationWeqar, B., Khan, M.T., Siddiqui, A.S. Optimal Placement of Distributed Generation and D-STATCOM in Radial Distribution Network (2018) Smart Science, 6 (2), pp. 125-133. Cited 15 times. http://www.tandfonline.com/toc/tsma20/current doi: 10.1080/23080477.2017.1405625spa
dcterms.bibliographicCitationIsha, G., Jagatheeswari, P. Optimal allocation of DSTATCOM and PV array in distribution system employing fuzzy-lightning search algorithm (2021) Automatika, 62 (3), pp. 339-352. Cited 14 times. http://www.tandfonline.com/loi/taut20 doi: 10.1080/00051144.2021.1963080spa
dcterms.bibliographicCitationSanam, J., Ganguly, S., Panda, A.K., Hemanth, C. Optimization of Energy Loss Cost of Distribution Networks with the Optimal Placement and Sizing of DSTATCOM Using Differential Evolution Algorithm (Open Access) (2017) Arabian Journal for Science and Engineering, 42 (7), pp. 2851-2865. Cited 27 times. https://link.springer.com/journal/13369 doi: 10.1007/s13369-017-2518-yspa
dcterms.bibliographicCitationNoori, A., Zhang, Y., Nouri, N., Hajivand, M. Multi-Objective Optimal Placement and Sizing of Distribution Static Compensator in Radial Distribution Networks with Variable Residential, Commercial and Industrial Demands Considering Reliability (Open Access) (2021) IEEE Access, 9, art. no. 9376874, pp. 46911-46926. Cited 20 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2021.3065883spa
dcterms.bibliographicCitationSalkuti, S.R. Optimal Allocation of DG and D-STATCOM in a Distribution System using Evolutionary based Bat Algorithm (2021) International Journal of Advanced Computer Science and Applications, 12 (4), pp. 360-365. Cited 20 times. http://thesai.org/Publications/Archives?code=IJACSA doi: 10.14569/IJACSA.2021.0120445spa
dcterms.bibliographicCitationBagherinasab, A., Zadehbagheri, M., Khalid, S.A., Gandomkar, M., Azli, N.A. Optimal Placement of D-STATCOM Using Hybrid Genetic and Ant Colony Algorithm to Losses Reduction (2013) Int. J. Appl. Power Eng. (IJAPE), 2, pp. 53-60. Cited 23 times.spa
dcterms.bibliographicCitationSakthi Gokul Rajan, C., Ravi, K. Optimal placement and sizing of DSTATCOM using Ant lion optimization algorithm (2019) 8th International Conference on Computation of Power, Energy, Information and Communication, ICCPEIC 2019, art. no. 9082382. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9079934 ISBN: 978-172810837-7 doi: 10.1109/ICCPEIC45300.2019.9082382spa
dcterms.bibliographicCitationSaravanan, M., Slochanal, S.M.R., Venkatesh, P., Prince, S.A.J. Application of PSO technique for optimal location of FACTS devices considering system loadability and cost of installation (Open Access) (2005) 7th International Power Engineering Conference, IPEC2005, 2005, art. no. 1627290. Cited 80 times. ISBN: 9810544693; 978-981054469-0spa
dcterms.bibliographicCitationSirjani, R. Optimal placement and sizing of PV-STATCOM in power systems using empirical data and adaptive particle swarm optimization (Open Access) (2018) Sustainability (Switzerland), 10 (3), art. no. 727. Cited 16 times. http://www.mdpi.com/2071-1050/10/3/727/pdf doi: 10.3390/su10030727spa
dcterms.bibliographicCitationJazebi, S., Hosseinian, S.H., Vahidi, B. DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm (Open Access) (2011) Energy Conversion and Management, 52 (7), pp. 2777-2783. Cited 122 times. doi: 10.1016/j.enconman.2011.01.006spa
dcterms.bibliographicCitationGupta, A.R., Kumar, A. Optimal placement of D-STATCOM using sensitivity approaches in mesh distribution system with time variant load models under load growth (Open Access) (2018) Ain Shams Engineering Journal, 9 (4), pp. 783-799. Cited 43 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2016.05.009spa
dcterms.bibliographicCitationSalkuti, S.R. Optimal location and sizing of DG and D-STATCOM in distribution networks (Open Access) (2019) Indonesian Journal of Electrical Engineering and Computer Science, 16 (3), pp. 1107-1114. Cited 17 times. http://ijeecs.iaescore.com/index.php/IJEECS doi: 10.11591/ijeecs.v16.i3.pp1107-1114spa
dcterms.bibliographicCitationMontoya, O.D., Chamorro, H.R., Alvarado-Barrios, L., Gil-González, W., Orozco-Henao, C. Genetic-convex model for dynamic reactive power compensation in distribution networks using D-STATCOMs (2021) Applied Sciences (Switzerland), 11 (8), art. no. 3353. Cited 14 times. https://www.mdpi.com/2076-3417/11/8/3353/pdf doi: 10.3390/app11083353spa
dcterms.bibliographicCitationSharma, A.K., Saxena, A., Tiwari, R. Optimal Placement of SVC Incorporating Installation Cost (2016) Int. J. Hybrid Inf. Technol, 9, pp. 289-302. Cited 20 times.spa
dcterms.bibliographicCitationHan, B.-S., Yang, Y.-J. An approximate algorithm for the mixed integer nonlinear programming (Open Access) (2012) Proceedings of the 2012 5th International Joint Conference on Computational Sciences and Optimization, CSO 2012, art. no. 6274761, pp. 433-437. Cited 5 times. ISBN: 978-076954690-2 doi: 10.1109/CSO.2012.101spa
dcterms.bibliographicCitationThi, H.A.L., Le, H.M., Dinh, T.P. (2020) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. Cited 2 times. Springer International Publishing, Berlin/Heidelberg, Germanyspa
dcterms.bibliographicCitationHusain, T., Muqueem, K., Ansari, M.M. Load flow analysis of radial and mesh distribution system using ZIP model (2016) Proceedings - International Conference on Global Trends in Signal Processing, Information Computing and Communication, ICGTSPICC 2016, art. no. 7955338, pp. 419-427. Cited 4 times. ISBN: 978-150900467-6 doi: 10.1109/ICGTSPICC.2016.7955338spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/s22228676
dc.subject.keywordsDistribution static compensatorsspa
dc.subject.keywordsMixed-integer convex optimizationspa
dc.subject.keywordsOptimal power flow approximationspa
dc.subject.keywordsRadial and meshed distribution networksspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.