Mostrar el registro sencillo del ítem

dc.contributor.authorGrisales-Noreña, L.F.
dc.contributor.authorMontoya-Giraldo, O.D.
dc.contributor.authorGil-González, W.
dc.date.accessioned2023-07-24T20:49:33Z
dc.date.available2023-07-24T20:49:33Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationGrisales-Noreña, L. F., Montoya-Giraldo, O. D., & Gil-González, W. (2022). Optimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithms. Arabian Journal for Science and Engineering, 47(11), 14657-14672.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12421
dc.description.abstractThis paper addresses the problem of optimal location and sizing of distributed generators (DGs) in direct current (DC) grids. To solve it, we propose an optimization approach with an objective function that aims to reduce power losses due to energy transport, while considering all the constraints that represent DC grids in a distributed generation environment. For the mathematical formulation of the problem, we used a mixed-integer nonlinear programming (MINLP) model, which allowed us to evaluate the impact of all possible configurations (i.e., location and size of DGs in the DC network) on the objective function and the constraints. The solution method proposed here is a master–slave strategy that implements a hybrid solution methodology that combines a genetic algorithm (GA) and the vortex search algorithm (VSA). The GA is in charge of solving the location problem in the master stage, and the VSA is responsible for sizing the DGs in the slave stage. To evaluate the effectiveness and robustness of the proposed GA/VSA methodology, we employed two test systems (i.e., 21 and 69 buses) considering a maximum penetration of distributed generation equal to 40% of the power generated by the slack buses. Furthermore, we also implemented nine other hybrid methodologies based on metaheuristic techniques (proposed in the literature for solving the problem addressed here) to make comparisons. All the solution methods used and proposed in this paper are based on sequential programming to avoid the need for specialized software and thus reduce the complexity and cost of the solutions. The effectiveness of the proposed solution was evaluated in two scenarios: (1) peak power demand and (2) variation in power generation and demand associated with photovoltaic generation and user demand in Medellín, Colombia. The results demonstrate that the GA/VSA methodology achieved the best results in terms of solution quality and processing times in all the test scenarios proposed in this study. © 2022, King Fahd University of Petroleum & Minerals.spa
dc.format.extent16 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceArabian Journal for Science and Engineeringspa
dc.titleOptimal Integration of Distributed Generators into DC Microgrids Using a Hybrid Methodology: Genetic and Vortex Search Algorithmsspa
dcterms.bibliographicCitationAnser, M.K., Iqbal, W., Ahmad, U.S., Fatima, A., Chaudhry, I.S. Environmental efficiency and the role of energy innovation in emissions reduction (Open Access) (2020) Environmental Science and Pollution Research, 27 (23), pp. 29451-29463. Cited 60 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-020-09129-wspa
dcterms.bibliographicCitationDanish, M.S.S., Matayoshi, H., Howlader, H.R., Chakraborty, S., Mandal, P., Senjyu, T. Microgrid Planning and Design: Resilience to Sustainability (2019) 2019 IEEE PES GTD Grand International Conference and Exposition Asia, GTD Asia 2019, art. no. 8716010, pp. 253-258. Cited 22 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8711479 ISBN: 978-153867434-5 doi: 10.1109/GTDAsia.2019.8716010spa
dcterms.bibliographicCitationHajiaghasi, S., Salemnia, A., Hamzeh, M. Hybrid energy storage system for microgrids applications: A review (2019) Journal of Energy Storage, 21, pp. 543-570. Cited 301 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.12.017spa
dcterms.bibliographicCitationKumar, J., Agarwal, A., Agarwal, V. A review on overall control of DC microgrids (2019) Journal of Energy Storage, 21, pp. 113-138. Cited 141 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.11.013spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm (2020) Journal of Energy Storage, 29, art. no. 101488. Cited 58 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101488spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A., Hernandez-Escobedo, Q., Perea-Moreno, A.-J. Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso (Open Access) (2020) Electronics (Switzerland), 9 (11), art. no. 1808, pp. 1-27. Cited 12 times. https://www.mdpi.com/2079-9292/9/11/1808/pdf doi: 10.3390/electronics9111808spa
dcterms.bibliographicCitationEhsan, A., Yang, Q. State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review (2019) Applied Energy, 239, pp. 1509-1523. Cited 135 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2019.01.211spa
dcterms.bibliographicCitationDeng, X., Lv, T. Power system planning with increasing variable renewable energy: A review of optimization models (2020) Journal of Cleaner Production, 246, art. no. 118962. Cited 133 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2019.118962spa
dcterms.bibliographicCitationAdam, G.P., Vrana, T.K., Li, R., Li, P., Burt, G., Finney, S. Review of technologies for DC grids – power conversion, flow control and protection (2019) IET Power Electronics, 12 (8), pp. 1851-1867. Cited 29 times. http://digital-library.theiet.org/content/journals/iet-pel doi: 10.1049/iet-pel.2018.5719spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D., Gil-González, W.J., Perea-Moreno, A.-J., Perea-Moreno, M.-A. A comparative study on power flow methods for direct-current networks considering processing time and numerical convergence errors (2020) Electronics (Switzerland), 9 (12), art. no. 2062, pp. 1-20. Cited 15 times. https://www.mdpi.com/2079-9292/9/12/2062/pdf doi: 10.3390/electronics9122062spa
dcterms.bibliographicCitationNasir, M., Iqbal, S., Khan, H.A. Optimal Planning and Design of Low-Voltage Low-Power Solar DC Microgrids (2018) IEEE Transactions on Power Systems, 33 (3), pp. 2919-2928. Cited 63 times. doi: 10.1109/TPWRS.2017.2757150spa
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (Open Access) (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640spa
dcterms.bibliographicCitationMontoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks (2020) Engineering Science and Technology, an International Journal, 23 (3), pp. 527-533. Cited 22 times. www.journals.elsevier.com/engineering-science-and-technology-an-international-journal/ doi: 10.1016/j.jestch.2019.06.010spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Grisales-Noreña, L.F. Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches (2020) International Journal of Electrical Power and Energy Systems, 115, art. no. 105442. Cited 23 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2019.105442spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Garzon-Rivera, O.D., Danilo Montoya, O., Ramos-Paja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks (Open Access) (2019) Communications in Computer and Information Science, 1052, pp. 214-225. Cited 12 times. http://www.springer.com/series/7899 ISBN: 978-303031018-9 doi: 10.1007/978-3-030-31019-6_19spa
dcterms.bibliographicCitationGarzon–Rivera, O.D., Grisales–Nore˜na, L.F., Ocampo, J.A., Montoya, O.D., Rojas–Montano, J.J. Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer (Open Access) (2020) Statistics, Optimization and Information Computing, 8 (4), pp. 846-857. Cited 10 times. www.iapress.org/index.php/soic/index doi: 10.19139/soic-2310-5070-1022spa
dcterms.bibliographicCitationWang, P., Wang, W., Xu, D. Optimal sizing of distributed generations in DC microgrids with comprehensive consideration of system operation modes and operation targets (2018) IEEE Access, 6, pp. 31129-31140. Cited 52 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2842119spa
dcterms.bibliographicCitationAjayi, O., Nwulu, N., Damisa, U. Application of metaheuristic algorithms in DC-optimal power flow (2020) African Journal of Science, Technology, Innovation and Development, 12 (7), pp. 867-872. Cited 4 times. http://tandfonline.com/action/journalInformation?show=aimsScope&journalCode=rajs20#.Vzs1DYSLTmE doi: 10.1080/20421338.2020.1726084spa
dcterms.bibliographicCitationKhezri, R., Mahmoudi, A., Haque, M.H. Two-Stage Optimal Sizing of Standalone Hybrid Electricity Systems with Time-of-Use Incentive Demand Response (2020) ECCE 2020 - IEEE Energy Conversion Congress and Exposition, art. no. 9236381, pp. 2759-2765. Cited 9 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9235288 ISBN: 978-172815826-6 doi: 10.1109/ECCE44975.2020.9236381spa
dcterms.bibliographicCitationPesaran H.A, M., Huy, P.D., Ramachandaramurthy, V.K. A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms (2017) Renewable and Sustainable Energy Reviews, 75, pp. 293-312. Cited 247 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.10.071spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018spa
dcterms.bibliographicCitationDoǧanşahin, K., Kekezoǧlu, B., Yumurtaci, R., Erdinç, O., Catalão, J.P.S. Maximum permissible integration capacity of renewable DG units based on system loads (Open Access) (2018) Energies, 11 (1), art. no. en11010255. Cited 21 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11010255spa
dcterms.bibliographicCitationÖzkış, A., Babalık, A. A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm (2017) Information Sciences, 402, pp. 124-148. Cited 54 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2017.03.026spa
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 80 times. doi: 10.1016/j.epsr.2018.07.003spa
dcterms.bibliographicCitationGrisales, L.F., Grajales, A., Montoya, O.D., Hincapié, R.A., Granada, M. Optimal location and sizing of Distributed Generators using a hybrid methodology and considering different technologies (2015) 2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings, art. no. 7250486. Cited 16 times. ISBN: 978-147998332-2 doi: 10.1109/LASCAS.2015.7250486spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1007/s13369-022-06866-7
dc.subject.keywordsMicrogrid;spa
dc.subject.keywordsDC-DC Converter;spa
dc.subject.keywordsElectric Potentialspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.